ãã«ã®ãŒã®ãã«ãŒãžã¥ã«ãŠ Nikon F4 Film scan by Nikon SUPER COOLSCAN 4000 ED ã©ã®ã¬ã³ãºã§æ®ã£ããå¿ããŠããŸã£ãã 24mmäœã ããã ä»ã¹ããªãŒããã©ãã®æ®ãæ¹ãåãããŠããã Fuji X100V HPæ²èŒã®ã¹ãããã®ããæ¹ã«äžå¿«ã«ãªãè³Œè²·ææ¬²ãããããåŸå³ãæªããé飿®ºå°ã§åé€ããããäŒæ¥ãšããŠã®ã³ã³ãã©ã€ã¢ã³ã¹ãåãããã ãã¹ãããã¯æããªãããšããéèªã®ç¹éãããèªãã§ã¿ããšã¹ãããã¯æããšæã£ãŠããŸãå 容ã ã£ãã ç§ã®å Žååçãæ®ãããšã ãã§ãªããèŠç¥ãã¬äººãšèŠªãããªã楜ãããããã ãããŒãå®ããçæ¯ã«åãåãããšã§éããå Žåãå€ãã å ã ãšæ®åœ±ããããšã§ãæ®åœ±ãããã®ãå«ãªäººã¯ãããã®ã§æ®åœ±ããªãã å€åœäººã®æ¹ãå¿«ãæ®ãããŠãããã確ç«ãé«ãã æšæ¶ã¯ïŒã¶åœèªäœèŠããŠãããšå¥œæãæã£ãŠããããã GFX50S II 35-70mm çµãF8 Std.
JPEG 颚æ¯åçæ®åœ±ã§ã¯ Fuji GFX50S II äž»ã«äœ¿ãã GFX50S II ã®è©³çŽ°ã¯ â¶ ãã¡ãã®èšäºãã芧ãã ããã 倿¹æ®åœ±ããããé°å²æ°ãåºãŠããªãã®ã§ã段éé²åºãã 0EVãš-3.67EVã®RAWç»åãéãæåã§HDRåŠçãã ãã¯ã€ããã©ã³ã¹ã調æŽãããå®éã«èŠãå°è±¡ã«è¿ãã 人ã®ç®ã¯èŠã€ããéšåã ã ã§æããã調æŽããåšãã®è²ãæããã«åœ±é¿ãåããéå»ã®èšæ¶ã®åœ±é¿ãåããã 倪éœãèŠãæã«ã¯å€ªéœãèŠããŠãããããããããèŠãæã«ã¯ãããããã¯ã£ããèŠããã å¿ ããããªãŒãã§æ®ãã°ããããã§ã¯ãªãããããèªåã®æå¿ã§æããããã¯ã€ããã©ã³ã¹ã決ããããšãéèŠã ã¡ãªã¿ã«å³ã¯ iPhone 12 Pro ã§æ®åœ±ããåç 詳现㯠ⶠãã¡ãã®èšäºãã芧ãã ããã Capture One 远å JPEGã¯ã«ã¡ã©ã§æ®åœ±ãããããŒã¿ããå å·¥ãããæ å ±ã§ã 8bitïŒ256é調ïŒã«çž®å°ãããããŒã¿éãå°ãããã æ®åœ±æã®å€ãã®ããŒã¿ã倱ãããŠãããåŸåŠçèæ§ãäœãã ããœã³ã³ãã¹ããã®ãã£ã¹ãã¬ã€ã§ã¯8bitã§è¡šç€ºãããJPEGã§ã ãããšèšããããæãããè²ãåŸåŠçãããšç»è³ªãå£åããã RAWããŒã¿ã¯æ®åæã«èšé²ãããæ å ±ãçã§èšé²ããããŒã¿ã§ ã«ã¡ã©ã«èšé²ããããã«ããŒã¿ãšèšã£ãŠãããããŒã¿éã倧ããã ããã ãå€ãã®æ å ±ãèšé²ãããããç»ååŠçã®å£åãå°ãªãã 12bitã§ã¯4096é調ã14bitã§ã¯16384é調ãšãªããå°ãªããšã 12bitã§æ®åœ±ããRAWçŸååŸ16bitã®TIFFããŒã¿ã«å€æã ç»ååŠçãããšé«ç»è³ªãªããŒã¿ãåŸãããã ããJPEGããŒã¿ããç¡ãå Žåã¯ã16bitã®TIFFããŒã¿ã«å€æ ããŠããç»ååŠçããã®ãããã åçã®æ¥œãã¿æ¹ã¯è²ã ããããæã ã¯äœåã¥ãããè¡ã£ãŠãã RAWã§æ®åœ±ãRAWçŸåãã16bit ã®é«ç»è³ªãªç»åãããªã³ãã åçéè³ããŠããããã£ã¹ãã¬ã€ã®è§£å床ã¯72dpiãããªãã ããªã³ãã§ã¯äººéã®ç®ã§èå¥ã§ãããšèšããã300dpi以äžã§ ããªã³ãã§ããåçãæ·±ãéè³ããããšãã§ããã ç®æ¬¡ ⌠簡åãªRAWçŸåãç»ååŠç ⌠RAWçŸåã®ã³ã ⌠RAWçŸåãç»ååŠçã®åºæ¬ stabilizer matris RAWçŸåã»ç»ååŠçã¢ããªã±ãŒã·ã§ã³ ⌠Adobe PhotoshopãLightroom ⌠Capture One ïŒè¿œå ïŒ âŒ Affinity Photo ïŒè¿œå ïŒ âŒ Nik Collectionããã£ã«ã ã·ãã¥ã¬ãŒã·ã§ã³ ⌠Capture NX-D ⌠SILKYPIX ⌠RAWçŸåã®äºäŸ ⌠颚æ¯åçã®ç»ååŠç ⌠ããŒãã¬ãŒãã®ç»ååŠç ⌠ã¢ãã¯ãã®RAWçŸåãç»ååŠç ⌠ã«ã©ãŒ ã°ã¬ãŒãã£ã³ã° ⌠ç»ååŠçã®äºäŸ ⌠ã·ã£ãŒãã«ãã ⌠ãã€ãºäœæžåŠç ⌠ã¬ã€ã€ãŒãã¬ã€ã€ãŒãã¹ã¯ ⌠ã¯ãŒã¯ãã㌠⌠ããœã³ã³ãããªã³ã¿ãŒãããªã³ãïŒWebåºå ç¶ããèªã ç®æ¬¡ ⌠ç¥ãã®æ®ãæ¹ âŒ åå°ã®ç¥ããç¥äº 1æ âŒ æ£æã ⌠ãããåãã âŒ åæ¥æã ⌠äžå¯ºãŸããã ⌠è¥èå±±çŒã 2æ ⌠ç¯å 3æ ⌠ã²ãªç¥ã 4æ âŒ äºæ¡å·ã®æ¡ãŸã€ãã ⌠ç¬å±±ç¥ã ⌠çœå³¯ç¥å®®ã»æ¥å£å€§ç¥ã ⌠姫æ§éäž 5æ ⌠ç¥ç«ãŸã€ã 6æ âŒ ææŸçµãç¥ã 7æ ⌠ç¥åç¥ã ⌠äžå€ã ⌠接島倩çç¥ã âŒ åŸ¡ææŽç¥ 8æ ⌠é¡äžãã©ãã âŒ äžæ²³äžè²å€§æç¯ãŸã€ãã ⌠è«èšªæ¹ã®è±ç«å€§äŒã ⌠åç¯äŸé€ã ⌠ã©çãäžç¥ã 9æ ⌠stabilizer matris ⌠島ç°é«·ç¥ãã ⌠ããããç¥ã 10æ ⌠ã¯ãã å±±è»ç¥ãã ⌠接島ã®ç§ç¥ãã ⌠倧é 倧éçºäººç¥ 11æ âŒ å¥¥äžæ²³ã®è±ç¥ãïŒïœ3æïŒ 12æ ⌠äºå§ãã âŒ é€ ã€ãã ⌠ã¯ãªã¹ãã¹ ä» âŒ æ±äº¬ã®ç¥ãã ⌠é«å±±ç¥ã ⌠ææèäŒãåäŸæèäŒ âŒ ç¥ãã®æ®åœ±ãã¯ãã㯠⌠ã«ã¡ã©ãã¬ã³ãºãæ®åœ±æ©æ ç¶ããèªã Lumix S1R 50mm çµã1.4 ããŒãã¬ãŒãæ®åœ±ã¯ã¢ãã«ãšã®å ±åäœæ¥ã«ãªããã¢ãã«ãšè¯ãé¢ä¿ãç¯ãããšãè¯ãããŒãã¬ãŒãåçãæ®ãéèŠãªããšã«ãªãã åçã¯äººç©ã«å§ãŸã人ç©ã§çµãããšèšãããã ããã»ã©äººç©åçã¯å¥¥æ·±ãã忥œããã ããŒãã¬ãŒãïŒããŒãã¬ã€ãã人ç©ïŒåçã¯è¯ãæ©æãåªããæè¡ã ãã§æ®ããããã§ã¯ãªãã被åäœã§ãã人ç©ãšã®é¢ä¿ãéèŠã§ããã®é¢ä¿ãåçã«çŸãããæè¡ã§ãããããšã¯ãããŠããã ãäºãã®honor, resprct, loveããªããã°ããŸããããªãã æããªããšããåçã¯æ®ããªãããæããããŠããããªãã ããäžã€éèŠãªã®ã¯ãèªåã®æãã女æ§ããããã«æ®ãããã åªãããæ®ããããçãã匷ããæ®ããã.
.
. ããããé£ããã®ã¯ãæãã匷ãããŠãããŸããããªãã èªååæã«ãªã£ãŠããŸã£ãŠã¯ãããªãã äžäººäžäººé¡ãéãã ãã§ãªããpersonalityãç°ãªãã çžæã®identityã倧åã«ããŠãããæ®åœ±è ãšå ±é³Žããæ çŽ æŽãããåçãçãŸããã æè¿ã¯æ®åœ±ãããšãããããæ®ãããŠããã ããŠãã ãšããæãã匷ããªã£ããèªåäžäººã§ã¯æ®åœ±ã§ããªãã ã¢ãã«ã«æè¬ å³ã¯ãœãããã©ãŒã«ã¹å¹æã«ããæããã衚çŸã«ããã äžã¯ã»ãŒåæå»ã«æ®åœ±ãã iPhone 12 Pro ã®åçãš ææ°ãã©ãŒã¬ã¹ã«ã¡ã©ã®åç å®ã¯å³ã iPhone ã®ç»å 段éé²åºãã0EVãš-3.67EVã®ç»åãéãæåã§HDRåŠçãããã¯ã€ããã©ã³ã¹ã調æŽãããå®éã«èŠãå°è±¡ã«è¿ãã HDR (High Dynamic Range) åæã¯ åçã«èšé²ã§ãããã€ãããã¯ã¬ã³ãž ïŒè¡šçŸã§ããææå·®ïŒãåºã衚çŸããã å³åŽæãææå·®ã倧ããã£ãã®ã§ æ®åœ±æé²åºãã©ã±ããã§+-1EVã§æ®åœ±ããã ïŒæã®åçãã·ã£ããŒã»ãã€ã©ã€ãã§èª¿æŽãããšæéšã«ãã€ãºãã®ã£ãããããŒã³ããã©ããã«ãªãããšããããHDRåŠçããæ¹ãããã ãªãŒãã§HDRåŠçããããšãã§ããããç§ã¯æåã§HDRåæããã +-0EVã®ç»åãäž»é¡ã®æ¡ã«åãããŠå°ãæããããå·ŠåŽã¯-1EVã®ç»åãé©çšããã ããã«éã«åãããRAWçŸåãè¡ããéã®éšåã«é©çšããã Affinity Photo ã«ãããšããã¯é²åºã®åæã§ãããHDRåæãšæ··åããŠã¯ãããŸãããšã®ããšã§ãã ãšããããšã§ãAffinity Photo ã® HDRåæãçšããäœäŸã玹ä»ããã é²åºå·®ã倧ããæ¡ä»¶ã ã£ãã®ã§ã æ®åœ±ææ®µéé²åºãã -1EVãš+1EVã§æ®åœ±ããç»åã RAWçŸååŸHDRåæããã Nik Collection ã® Silver Efex Pro 2 ããç»åå£åãå°ãªãã ææå·®ã倧ããªæ®åœ±å¯Ÿè±¡ãæ®åœ±ãããšçœé£ã³ãé»ã€ã¶ãããŠããŸãããšãããã ãã®éšåã«ã¯ããŒã¿ããªããåŸåŠçã§åŸ©å ããããšã¯ã§ããªãã ææå·®ãåºãããŒã¿ãèšé²ã§ãã RAWã§æ®åœ±ããããšãæãŸããã RAWã¯æ®åçŽ åã«èšé²ãããæ å ±ã çã§èšé²ããããŒã¿ã§ã8bitã®JPEG ããŒã¿ãããïŒæã®åçã«å€ãã®è²ãæããã®æ å ±ãèšé²ãããŠããã ã«ã¡ã©ããã€ãããã¯ã¬ã³ãžãåºã㊠ãããã¢ã¯ãã£ãDã©ã€ãã£ã³ã°çã ããããç»åå£åãèµ·ããããšããããé床ãªèšå®ã¯ããªãæ¹ãè¯ãã ã«ã¡ã©å ã§HDRïŒãã€ãã€ãããã¯ã¬ã³ãžïŒã§ããæ©èœãæã€æ©çš®ãããããäœ¿ãæ¹ãééãããšã¡ãªããªã®ç¡ãåçã«ãªã£ãŠããŸããã·ãã¥ãšãŒã·ã§ã³ã«ãã£ãŠã¯ææå·®ã倧ããæ¹ãè¿«åã®ããåçã«ãªãããšãããã ããã§ã¯ããã粟å¯ã«ãé«ç»è³ªã«èª¿æŽã§ããåŸåŠçã§ãã€ãããã¯ã¬ã³ãžãåºããæ¹æ³ã«ã€ããŠè¿°ã¹ãã ç¶ããèªã ç»åãã¯ãªãã¯ãããšA4ããªã³ããµã€ãºçžåœæ¡å€§ç»åãéã åã¬ã€ã€ãŒã®äžéæåºŠã調æŽããŠå®æãããã å šè¬çã«ãã€ããæãã§ãããªãã®ã§ Affinity Photo ã§ ç»ååŠçããã ãŸãã¬ãã«è£æ£ã§å°ãæãããããã¯ã€ããã©ã³ã¹ãå°ã ãã«ãŒç³»ã«ãµã£ãŠéææãåºããã HSLã«ã©ãŒãã€ãŒã«ã§ãã«ãŒç³»ã®è²èª¿ã調æŽããã å šäœçã«èª¿åãèŠãŠ éšåçã«ã¬ã€ã€ãŒãã¹ã¯ã§åŸ®èª¿æŽã宿ãããã ã«ã©ãŒã°ã¬ãŒãã£ã³ã°ã§ã¯è²ã®çµã¿åãããéšåçãªæãããã³ã³ãã©ã¹ãã®èª¿æŽã§èŠæ ããè¯ãããã ã«ã¡ã©ã®èšå®ãç»ååŠçã¯ã©ããŸã§ãã£ãŠããã®ã ãããã èžè¡ã¯èªç± éåæãç¡ãã蚎ããåã匷ããªãã®ã§ããã°ãäœåã®è¡šçŸæ¹æ³ãšããŠèããŠããã®ã§ã¯ã ãã£ã«ã ã«ã¡ã©ã®æä»£ã§ãã ãã£ã«ã ã«ããè²èª¿ã®éãããã ãã£ã«ã ã®éžæã楜ãã¿ã ã£ãã 衚çŸã¯èªç± ç»åãã¯ãªãã¯ãããšA4ããªã³ããµã€ãºçžåœã®æ¡å€§ç»åãéã æè¡ã§ãããããšã¯ãããŠãããæè¡ããå ¥ããšææ§ã®éªéãããŠããŸãã é説çã«ãªãããããŸãåçãæ®ãããšããã®ããããŠã¿ããã è¯ãåçã«ãªããã©ãããèããã®ã§ã¯ãªããèªåãæ°ã«ãªããèå³ããããæåããã®ããæ®ã£ãŠã¿ããã æãšããŠãäœèšãªæ°æã¡ãæ³ååãåµé æ§ã®éªéãããŠããŸãã è¯ãåçã¯ãšããªããŠãããã®ã§ãææ§ã«åŸãã·ã£ãã¿ãŒãæŒãããã èãéãããšå¹³å¡ãªåçã«ãªã£ãŠããŸãã äœãéãããšé¢çœããªããªã£ãŠããŸãã ã¹ã©ã³ãã®æããäœãèãããã¹ãã¬ãŒãã«åçãæ®ãæ¹ãè¯ãã®ã§ã¯ åäŸãæãããããªãé¢çœãåçãæ®ãããšããããåäŸã®å¿ãæã£ãŠããããšãéèŠã å®å šã§ãªããŠããããäžå®å šãã®äžã«é¢çœããããã å®ç§ã«æ®ãããããšããã€ãåãåçã«ãªã£ãŠããŸãã åçã¯èªç±ãæ£è§£ã¯ç¡ããèªåã奜ããªåçãæ®ã£ãŠã¿ããã åæµ·éã®ããã«å®¿æ³äºçŽããã©ãã€ã¹åæµ·éã®å®¿ãæž©æ³å®¿æ³ãšããã«äºçŽïŒå®¿æ³è²»5ïŒ å²åŒã¯ãŒãã³ä»ã§åæµ·éæ è¡èšç»ïŒ åæµ·éã®å®¿ã¯æž©æ³æ 通ããã«ïœ¥ã³ããŒãžïœ¥ããžãã¹ããã«ïœ¥æ°å®¿ïœ¥å ¬å ±å®¿æ³æœèšã®å®¿æ³äºçŽ å©çšäžã®æ³šæäºé ïœ äºçŽå 容倿Žïœ¥ãã£ã³ã»ã«ïœ ããŒã¯ã®èª¬æïœ ããã«äºçŽã·ã¹ãã ïœ ç®¡çãã°ã€ã³ åæµ·éæ è¡èšç»ã¯ãã©ãã€ã¹åæµ·éã®å®¿ã§å®¿æ³äºçŽïŒæ¹çã®æž©æ³å®¿ãæºæ³ããæµãã®æ¹¯ã貞åé²å€©é¢šåãªã©èªåã«åã£ãæž©æ³æ 通ããç§æ¹¯ãæž©æ³ã³ããŒãžããããŠããžãã¹ããã«ãã·ãã£ãŒããã«ã«å®¿æ³ããŠåæµ·éæ è¡ãæºå«ãããïŒ åæµ·éã®å®¿ïœ¥æž©æ³ïœ¥æ 通ããã«ã®ç©ºå®€æ€çŽ¢ãã宿æ³äºçŽ åœæ¥äºçŽå¯ èœãªããã«â»æéã«ãã£ãŠã¯äºçŽäžå¯ã®å Žåãã ãã§ãã¯ã€ã³ 幎 æ æ¥ ãã§ãã¯ã¢ãŠã 幎 æ æ¥ åžåºçºæïœ¥æž©æ³ 1宀人æ°ãšéšå±æ° 倧人 æ§ åžæ äžæ³1åæ§æé åä»¥äž å以å äžèšã®æ¡ä»¶ã§å®¿ã ããã æž©æ³ïœ¥ããã«ïœ¥æ 通ã®å ¬åŒãµã€ããã宿æ³äºçŽ â é倮ãšãªã¢ èææµæž©æ³ 湯å ããã«ã»ããã ããžãã¹ããã« HORINããŒãªã³ åæµ·éãŠãŒã¹ãã¹ãã«åäŒ â éåãšãªã¢ è±å¯æž©æ³ ããã«è±å¯ ããã«å©å°» â éåãšãªã¢ æµå±±æž©æ³æ 通 é¹¿éšæž©æ³ é¹¿ã®æ¹¯ â éæ±ãšãªã¢ å·æ¹¯æž©æ³ ããã«ããŒã¯ãŠã§ã€ ä»äŒæž©æ³ å±æè·¯æ¹è åæµ·éã®åå°åã®æž©æ³ãšããã«ã®å®¿æ³ãªããŒãé â é倮ãšãªã¢ åŠç²Ÿã®æ³æž©æ³ å®å±±æžæž©æ³ æå¹åž å°æšœåž å°æšœæž©æ³ äœåžçº å²©å æž©æ³ 岩å çº ãã»ã³æž©æ³é· NEWïŒ ãã»ã³çº èè¶çº NEWïŒ æ°åæŽ¥å·æž©æ³ æ°å接å·çº æ¯ç¬æ¹æž©æ³ ããšãæž©æ³ äžžé§æž©æ³ åæ³åž è«å°ç§åž èææµæž©æ³ çœèçº ç»å¥æž©æ³ ç»å¥ã«ã«ã«ã¹æž©æ³ ç»å¥åž æŽçºæ¹æž©æ³ æŽçºæ¹çº 壮ç¥çº äŒéåž ããã ã¹ããŒå Ž å å æ æ¥é«çº æ°ã²ã ãçº ãããçº çŸççº å¯è¯éåž â éåãšãªã¢ 湯ã®å·æž©æ³ åœé€šæž©æ³ æµå±±æž©æ³ åœé€šåž å€§æ²Œæž©æ³ æ£®çº é¹¿éšæž©æ³ 鹿éšçº äžé£¯çº äžã®åœçº è±æ²¢æž©æ³ ä¹éšæž©æ³ ä¹éšçº è²åæŸæž©æ³ åæªå±±æž©æ³ ãããªçº å¥¥å°»çº äºè¡ã©ãžãŠã æž©æ³ é·äžéšçº â éåãšãªã¢ æå·åž æå²³æž©æ³ æ±å·çº å±€é²å³¡æž©æ³ äžå·çº ç¬æžç¬æž©æ³ é è»œçº çšå åž è±å¯æž©æ³ è±å¯çº ã³ãµãæž©æ³ çŸæ·±çº å©å°»çº å©å°»å€©ç¶æž©æ³ â éæ±ãšãªã¢ åž¯åºæž©æ³ 垯åºåž å¹å¥æž©æ³ å¹å¥çº ååå·æž©æ³ 鳿Žçº ç¶å¥æ¹çæž©æ³ é¹¿è¿œçº é§è·¯åž å·æ¹¯æž©æ³ æ©åšæž©æ³ ä»äŒæž©æ³ åŒåå±çº åå±±æž©æ³ çœ®æžçº äœåéçº æ»ã®æ¹¯æž©æ³ æž©æ ¹æ¹¯æž©æ³ åèŠæž©æ³ åèŠåž å°æž æ°Ž æž éçº æéçº ç¥åºãŠããæž©æ³ ãåæµ·éã®å®¿ãã§ã¯ãã客æ§ã®å人æ å ±ãå®å šã«éåä¿¡ããããã«ããå®¢æ§æ å ±å ¥åç»é¢ããæå·åéä¿¡ãããã³ã«ã§ããSSLïŒSecure Sockets LayerïŒãå©çšããŠãããŸãã æ°çæ å ± é¹¿éšæž©æ³ é¹¿ã®æ¹¯å ¬åŒãµã€ãOPENïŒ é¹¿éšæž©æ³ã®å®¿æ³äºçŽã¯é¹¿éšæŒæž¯ã«æãè¿ãé¹¿ã®æ¹¯ã§ïŒæ°é®®ãªéä»é¡ã«ã²ãšæéå ããæµ·é®®æçãš100å¹Žã®æŽå²ããæºæ³ããæµãã®æž©æ³ãèªæ ¢ã®å®¿ã 倧æ£9å¹Žåµæ¥ã®èèæž©æ³æ 通ã§ãã ãããšåå±±æž©æ³ ãããã³ããŒãž 宿æ³äºçŽéå§ïŒ æºæ³100ïŒ å€©ç¶æž©æ³ãåã³ããŒãžã«ä»ãèªç¶ãæºå«ããªããã貞åå ¥æµŽãæ¥œãããŸããå¯å ·ã調çåšå ·ã»é£åšãªã©ãæã£ãŠãããŸããã°ã«ãŒããå®¶ææ è¡ã«æé©ã§ãã åæµ·éã®å®¿ å§åйäºçŽãµã€ã åæµ·éããã«äºçŽãµã€ã ãåæµ·éã®å®¿ãã«ãªã³ã¯ããããæ¹ãã©ããå·Šã®ãããŒãã䜿çšäžããã åæµ·éã®çŸå³ãã 飲é£åºã«å³æäºçŽãããªããã®ãµã€ãïŒã©ããå·Šã®ãããŒãã䜿çšäžããã åæµ·éãæ ãããªãã¬ã³ã¿ã«ãŒãåãã¡ãããïŒåæµ·éã®ã¬ã³ã¿ã«ãŒäºçŽã¯ ãã¬ã³ã¿ã«ãŒåæµ·éãã§ïŒ åæµ·éã®å®¿ã«äºçŽãããæ¹ãžã®æ³šæäºé åæµ·éã®å®¿ã§ã¯ãé¢åãªäŒå¡ç»é²ã®å¿ èŠã¯ãããŸãããæ¥ä»ãæå®ãããã宿æ³ãã©ã³ã®ã«ã¬ã³ããŒç»é¢ã«ãŠç©ºå®€ç¶æ³ã確èªããŠã 宿æ³äºçŽãæç«ããŸããäºçŽçŽåŸã«äºçŽæç«ã¡ãŒã«ãå±ããŸãã®ã§åä¿¡ãããŠã確èªäžãããã客æ§ã®Eã¡ãŒã«ã¢ãã¬ã¹ã®ééããæºåž¯é»è©±ã®ã¡ãŒã«åä¿¡èšå®ïŒãã¡ã€ã³æåŠïŒãã䜿ãã®ã³ã³ãã¥ãŒã¿ãåã¯ãããç°å¢ã«åé¡ãããå ŽåãäºçŽæç«ã¡ãŒã«ãå±ããªãäºããããŸãããã®å Žåã¯å床ã確ããã®äžãäºçŽãããçŽããŠäžãããå°ããã£ã³ã»ã«åã¯äºçŽå 容ã®å€æŽããããå Žåã¯ãåããã«ã«çŽæ¥ãé»è©±ãããããããã«äºçŽæç«ã¡ãŒã«ãå±ããæ¹ã¯ããµã€ãäžã® äºçŽå 容倿Žã»ãã£ã³ã»ã«ã«ãŠãã£ã³ã»ã«ãåã¯å®¿æ³å 容ã®å€æŽããèªèº«ã§è¡ã£ãŠäžããããã®å ŽåãäºçŽå 容倿Žã¡ãŒã«ãå³å±ããŸããå®¿æ³æ¥ã®3æ¥åã®ãã£ã³ã»ã«ã«ã€ããŸããŠã¯ãåããã«ã®èŠå®ã«åºã¥ããŠãã£ã³ã»ã«æããããå ŽåããããŸãã®ã§ã泚æäžãããåãæ³åŸäžã宿æ³è ã¯æ°åã»äœæã»é£çµ¡å ããã¡ããšæèšããäºã矩åä»ãããŠãããŸããããã¯ããŒã ããã³ãã«ããŒã ãåœãã®ãååã¯æ³åŸéåãšãªããŸãã®ã§ãæ£ããèšèŒããŠäžãããå°ã宿æ³ãäºçŽã«é¢ããããã«ãšã®ãã©ãã«çã«ã€ããŸããŠã¯ãäžå責任ã¯è² ããããŸãã®ã§ãäºæ¿äžãããå®¿æ³æéã¯ããã§ãã¯ã€ã³åã¯ãã§ãã¯ã¢ãŠãæã«çŽæ¥ããã«ã«ãæ¯æãäžããã åœãµã€ãã¯çŸéãåã¯ã¯ã¬ãžããã«ãŒãã®ã¿å©çšå¯èœãšãªã£ãŠãããŸãã宿æ³åžçã®å©çšã®éã¯ãäºåã«çŽæ¥äºçŽãããããã«ã«ãååããäžããã äŒç€ŸæŠèŠ ïœ å人æ å ±ä¿è·ããªã·ãŒ - äºçŽå 容倿Žïœ¥ãã£ã³ã»ã« - ããŒã¯ã®èª¬æ - ããã«æ§ãžã®ãæ¡å ïœ ç®¡çãã°ã€ã³ PARADISE HOKKAIDO WEB CONTENTS ããããããŒãžã ããããã¯ã¹ã ã宎äŒäºçŽã ããªããŒãã ã宿æ³äºçŽã ãåžçºæã ãæž©æ³ã ãã¹ããŒ&ããŒãã ããªãŒããã£ã³ãã ãéã®é§ ã ãäº€éæ©é¢ã ãã°ã«ã¡ã ãã€ãã³ãã ãã°ã«ã¡åç»ã ãã¬ã³ã¿ã«ãŒã ããªã³ã¯ã ãHPå¶äœã ãåºåã ãæ±äººã Copyright ïŒCïŒ2003- N43net Co., Ltd.
All Rights Reserved. çŸåš ã¢ã¯ã»ã¹
ãããæ¥ãŠèžããæŽãŸãããã ãã©èº«é·å·®ããããŠè¿«åãªããªãŒ ãŸã§ã¯èšæ¶ã«ãããã§ããã©ãð ã§ãä¹±éã«ã¯ãªã£ãŠãªãã£ãð ãŠãããªã£ãŠããèŠããŠãð ç§ãããçŽ°èº«ã«æããŠããã©å®éã¯çµæ§ã¬ãã·ãªããŠãŸãð
èãé«ããããªãã€ãŒãããã«ã€ã§ãã ç¿å€ªã¯ãããšåããããèããã£ãŠçްãããã§ç³»ã ãšããäºã§ã次åããå±éãå€ãããŸãïŒ ããããããã¿ãããã³ã女ãã®ç»å Žã§ãïŒ èŠããŠã人ããããªïŒ ã€ã³ããŒåœŒæ°çµãã£ãæã«äºåããããã§ã ãŸã åºå®¢2ãåããŠãªãã®ã«3ãæ¥ã¡ãã£ãã£ãŠèšãâŠð§ ãã®è©±ã®ããšããã§æããŠããã€â ãè±å«ã®æ¡ä»¶ããšããã¿ã€ãã«ã¯å€ãããŸããããæ¬¡ãã衚çŽãå€ããŠãµãã¿ã€ãã«ãã€ããŸãïŒ ããšãä»åããŸãã€ãã£ã€ãã£ããªãã£ãã®ã§æ¬¡ã¯ããå°ãå
¥ãããããªããšæã£ãŠãŸãð ç¶ãã¯ãã¡ãã§ã 1æãã€ã§ååã ãïŒãšå
茩ããåã«èããŠããŸããã ãïŒãããªã®ïŒãšãèšãããéãã«ããŸãããã 確ãã«äžé±éå€ããªããªããããªããŸãããâŠð§ ãããŠå
ç⊠ãã以äžèšãæ°åã倱ã£ãŠããŸããŸããâŠð§ ããã«ãããããæ¬¡ã®æ¹èŠãããŠãŸããã ãšèšãããåã°åŒ·å¶çµäºã¿ããã«ãªã£ãã®ã§ããã å»äžã«åºãã誰ãããŸããã§ããð€£ð€£ð€£ å
çã«ã¯èª°ãèŠããŠãã®ããªïŒð âŠã§ãçµå±ã®æã©ããªã£ãããšèšããšã 1ã2幎çã«é¢ããŠã¯äœãå€ãããŸããã§ããð§ ãã®æç§ããã£ãšé£ãäžãã£ãŠããŠã⊠å€åå€ãããªãã£ããšæããŸãð§ å ã¿ã«çŸåš4幎ç(次5幎)ã®é·å¥³ã¯äœææã®äžã«èçãæ®éã«çãŠããŸãã å€ãã®èçã¯æã£ãŠãã£ããæã£ãŠãããªãã£ããâ ã¡ãã£ãšã¢ã€ãçµããæ¹ã§ãã¿ãŸããðŠ ã§ããããã»ãŒ100%ãã³ãã£ã¯ã·ã§ã³ã®ç§ã®å®äœéšã§ã ðââïž ãã®ã話ãæãå§ããŠãããããã®ã³ã¡ã³ããDMãé ããç§èªèº«ãè²ã
åèã«ãªããŸããã ãã¡ã®ããã«çµæ§3幎çããOKãªæãå€ãããã§ããã ãã¯ããåŠæ ¡ã®ããäºã¯å
šãŠæ£ãããå³ã«ãªãããããã®ã§ã¯ãªãã ãããããšæã£ãäºãåäŸã®çºã«ã¯ãªããªããšæã£ãããšã¯ ã§ã¯ç¶ããã©ããð æãæãé£çµ¡åž³ãéããŠã¿ããšâŠ é©ãã®èšèãâŠïŒïŒïŒ ãžïŒð³ çŠæ¢ããŠããªãâŠïŒð§ ãªããšã黿¿ã«ã·ã£ããè±ãããæžããã®ã¯ãåœæ¥èæ±æ€æ»ããã£ããããšã®äºã§ããïŒ ãã èããŠãªãâŠð§ ããã«âŠ ãïŒ ããïŒ æã£ãŠãã£ãããïŒð§ ããã確ãã«ãããªãã ãã©ã èæ±æ€æ»ãç¥ããªãã£ãç§ãæªãã®ãããããªããã©âŠ ãªãããã²ã®ããèšãæ¹âŠð ããã«ãçŠæ¢ããŠãªãã£ãŠèšãããŠãã çŸã«åšã¯èçãçã¡ããã¡ã ãšæã£ãŠãããããåéãè¿·ã£ãŠããŠçããããã«ããç¶æ³âŠ 3幎çããã¯çãŠè¯ããªã£ãã®ãâŠïŒ çåã«æã£ãç§ã¯åã³é£çµ¡åž³ã«æžãäºã«ããŸããã ãããŠç¿æ¥âŠ æšæ¥ã®é£çµ¡åž³ããã¯å
çãæã£ãŠããããã«æããç§ã¯ããããããªããäžãéããŸããðŠ ãããããã«ã¯è¬çœªã®èšèãâŠïŒ ãããŠåŸæ¥âŠ çŽæããŠãããéããããªã³ããé
ãããã®ã§ãïŒ ããã«ã¯ããåã⊠ãšããããããã®ä»¶ã¯äžä»¶èœçããŸããïŒ ãã ⊠å人é¢è«ã®äºå®ããã£ããããããã§å
çã«ã瀌ãèšãããšæããŸããã ãããšããäžã€ãçåã«æãäºããããŸããã ããã¯âŠ ãªã2幎çãŸã§ã¯ãã¡ãªã®ãïŒã£ãŠããšã ç§ã¯ã©ãããŠããèçããã¡ãªçç±ãããããªãã®ã§ãã å®ã¯ãã¡ã®åŠæ ¡ã¯äœè²ã§äœ¿ã£ãåŸãé±ã®éäžã§æã¡åž°ãããšã¯ãªãããã£ãšçœ®ãã£ã±ãªã⊠äŸãã°ãææã«çŽ èã®äžã«çŽæ¥çãŠæ±ããã£ã±ãåžãåã£ãäœææã ããããã®ãŸãŸæŸçœ®ããéæã«ãŸãçãã®ã§ãã ããã£ãŠæž
æœã§ã¯ãªãã§ãããïŒð æã¡åž°ã£ã¡ããããªãäºã«ãªã£ãŠãã®ããŸãçåã§âŠ èšªåããããšãããããŸãð ä»åã¯æ¥åžžç·šãšãããã 以åwebã¡ãã£ã¢ã§é£èŒããŠããã話ãã³ã³ãã¯ãã«ããŠåæ²ãããã®ã§ãã ä»ããã¥ãŒã¹ã§å°åŠçã®äœææã®äžã®èçãçŠæ¢ããŠããåŠæ ¡ã 話é¡ã«ãªã£ãŠããŸãããã å®ã¯äžæšå¹Žç§ããã®åé¡ã«çŽé¢ããã®ã§æ¹ããŠæžãããšæããŸããã åéã«æåã§è£è¶³ãå¿
èŠã ã10æã«åãŸããªãã®ã§ããã°éå®ã§ãã äžåã§ãŸãšãããã®ã¯ããŸããŸã ã£ãã®ã§ãããããã«é·ãã®ã§3åã«åããŸãã ããã¯åšãå°äžã®æã éåäŒã®æã§ãã å®¶ããäœææãçãŠããã®ã§ãããåšã¯ããããã«äžã«çãŠããèçãè±ãã ã®ã§ãã çç±ãèããšâŠ å®ã¯ç§ã¯ãã®æåããŠäœææã®äžã®èçãçã¡ããã¡ã ãšç¥ããŸããã çåã«æã£ãç§ã¯é£çµ¡åž³ã§èããŠã¿ããè¿·ã£ãã®ã§ããã ã²ãšãŸãããåã«èããŠã¿ãããšã«âŠ ãããš âŠãªããŠè©±ãããŠãå®éä»ãçŠæ¢ãªã®ãããããªãã£ãã®ã§ãã°ããé£çµ¡ããã«ããŸããã ãããªããæ¥ãã¡ãã£ãšæ°ã«ãªã£ãŠåã³åšã«èãããšãã⊠TAGS ⢠News(55) ⢠æ°è(41) ⢠2015幎ãã¹ãã¢ã«ãã (36) ⢠Electronic(35) ⢠Experimental(33) ⢠æ°å(25) ⢠Live(24) ⢠Bandcamp(21) ⢠ambient(19) ⢠Virgin Babylon Records(16) ⢠Stabilizer matris ⢠å°èª¬(11) ⢠Movie(11) ⢠Indie(11) â¢ æ²³åºæžæ¿æ°ç€Ÿ(10) ⢠Oneohtrix Point Never(10) ⢠Festival(10) ⢠Arca(9) â¢ æ¥æ¥å
¬æŒ(8) ⢠Drone(8) ⢠world's end girlfriend(8) ⢠post rock(8) ⢠Soundcloud(7) ⢠ãã³ãã»ãã·ã(7) ⢠Folk(7) ⢠SSW(7) ⢠Have a Nice Day!(7) ⢠Hudson Mohawke(6) stabilizer matris BOOL(6) ⢠canooooopy(6) ⢠Electronica(6) ⢠WWW(5) â¢ çœæ°Žç€Ÿ(5) â¢ åœæžåè¡äŒ(5) ⢠Fashion(5) ⢠Holly Herndon(5) ⢠Video(5) stabilizer matris PROGRESSIVE FOrM(5) ⢠D/P/I(5) ⢠David Bowie(5) ⢠.
⢠+ MORE TAGS ⢠News(55) ⢠æ°è(41) ⢠2015幎ãã¹ãã¢ã«ãã (36) ⢠Electronic(35) ⢠Experimental(33) ⢠æ°å(25) ⢠Live(24) ⢠Bandcamp(21) ⢠ambient(19) ⢠Virgin Babylon Records(16) ⢠Release(14) ⢠å°èª¬(11) ⢠Movie(11) ⢠Indie(11) â¢ æ²³åºæžæ¿æ°ç€Ÿ(10) ⢠Oneohtrix Point Never(10) ⢠Festival(10) ⢠Arca(9) ⢠stabilizer matris ⢠Drone(8) ⢠world's end girlfriend(8) ⢠post rock(8) ⢠Soundcloud(7) ⢠ãã³ãã»ãã·ã(7) ⢠Folk(7) ⢠SSW(7) ⢠Have a Nice Day!(7) ⢠Hudson Mohawke(6) ⢠BOOL(6) ⢠canooooopy(6)
æåãµã€ãºå€æŽæ©èœãå©çšããã«ã¯JavaScriptïŒã¢ã¯ãã£ãã¹ã¯ãªããïŒãæå¹ã«ããŠãã ãããJavaScriptïŒã¢ã¯ãã£ãã¹ã¯ãªããïŒ ãç¡å¹ã®ãŸãŸæåãµã€ãºã倿Žããå Žåã«ã¯ããå©çšã®ãã©ãŠã¶ã®è¡šç€ºã¡ãã¥ãŒããæåãµã€ãºã倿ŽããŠãã ãããè²ã®å€æŽæ©èœãå©çšããã«ã¯JavaScriptïŒã¢ã¯ãã£ãã¹ã¯ãªããïŒãæå¹ã«ããŠãã ãããWindows OSããå©çšã§ãJavaScriptïŒã¢ã¯ãã£ãã¹ã¯ãªããïŒ ãç¡å¹ã®ãŸãŸè²ã®å€æŽãããå Žåã«ã¯ãã³ã³ãããŒã«ããã«ã®ããŠãŒã¶è£å©ã®ãªãã·ã§ã³ãïŒVista以éã®ããŒãžã§ã³ã§ã¯ãã³ã³ãã¥ãŒã¿ã®ç°¡åæäœã»ã³ã¿ãŒãïŒã®èšå®ã§ããã£ã¹ãã¬ã€å
šäœã®è²åãã倿ŽããŠãã ããã å·Š Alt + å·Š Shift + Printscreen ããŒãæŒãããšã§è²åãã倿Žããããšãã§ããŸãã
For the rings, see triangular matrix ring.
In the mathematical discipline of linear algebra, a triangular matrix is a special kind of square matrix. A square matrix is called lower triangular if all the entries above the main diagonal are zero. Similarly, a square matrix is called upper triangular if all the entries below the main diagonal are zero.
Because matrix equations with triangular matrices are easier to solve, they are very important in numerical analysis. By the LU decomposition algorithm, an invertible matrix may be written as the product of a lower triangular matrix L and an upper triangular matrix U if and only if all its leading principal minors are non-zero. Contents ⢠1 Description ⢠1.1 Examples ⢠stabilizer matris Forward and back substitution ⢠2.1 Forward substitution ⢠2.2 Applications ⢠3 Properties ⢠4 Special forms ⢠4.1 Unitriangular matrix ⢠4.2 Strictly triangular matrix ⢠4.3 Atomic triangular matrix ⢠5 Triangularisability ⢠5.1 Simultaneous triangularisability ⢠6 Algebras of triangular matrices ⢠6.1 Borel subgroups and Borel subalgebras ⢠6.2 Examples ⢠7 See also ⢠8 References Description [ edit ] A matrix of the form L = [ â 11 0 â 21 â 22 â 31 â 32 â± â® â® â± â± â n1 â n2 ⊠â nn â 1 â n stabilizer matris, n ] {\displaystyle L={\begin{bmatrix}\ell _{1,1}&&&&0\\\ell _{2,1}&\ell _{2,2}&&&\\\ell _{3,1}&\ell _{3,2}&\ddots &&\\\vdots &\vdots &\ddots &\ddots &\\\ell _{n,1}&\ell _{n,2}&\ldots &\ell _{n,n-1}&\ell _{n,n}\end{bmatrix}}} is called a lower triangular matrix or left triangular matrix, and analogously a matrix of the form U = [ u 11 u 12 u 13 ⊠u 1n u 22 u 23 ⊠u 2n â± â± â® â± u n â 1n 0 u nn ] {\displaystyle U={\begin{bmatrix}u_{1,1}&u_{1,2}&u_{1,3}&\ldots &u_{1,n}\\&u_{2,2}&u_{2,3}&\ldots &u_{2,n}\\&&\ddots &\ddots &\vdots \\&&&\ddots &u_{n-1,n}\\0&&&&u_{n,n}\end{bmatrix}}} is called an upper triangular matrix or right triangular matrix.
A lower or left triangular matrix is commonly denoted with the variable L, and an upper or right triangular matrix is commonly denoted with stabilizer matris variable U or R. A matrix that is both upper and lower triangular is diagonal. Matrices that are similar to triangular matrices are called triangularisable.
A non-square (or sometimes any) matrix with stabilizer matris above (below) the diagonal is called a lower (upper) trapezoidal matrix. The non-zero entries form the shape of a trapezoid. Examples [ edit ] This matrix [ 1 4 1 0 6 4 0 0 1 ] {\displaystyle {\begin{bmatrix}1&4&1\\0&6&4\\0&0&1\\\end{bmatrix}}} is upper triangular and this matrix [ 1 0 0 2 96 0 4 9 69 ] {\displaystyle {\begin{bmatrix}1&0&0\\2&96&0\\4&9&69\\\end{bmatrix}}} is lower triangular.
Forward and back substitution [ edit ] A matrix equation in the form L x = b {\displaystyle L\mathbf {x} =\mathbf {b} } or U x = b {\displaystyle U\mathbf {x} =\mathbf {b} } is very easy to solve by an iterative process called forward substitution for lower triangular matrices and analogously back substitution for upper triangular matrices. The process is so called because for lower triangular matrices, one first computes x 1 {\displaystyle x_{1}}then substitutes that forward into the next equation to solve for x 2 {\displaystyle x_{2}}and repeats through to x n {\displaystyle x_{n}}.
In an upper triangular matrix, one works backwards, first computing x n {\displaystyle x_{n}}then substituting that back into the previous equation to solve for x n â 1 {\displaystyle x_{n-1}}and repeating through x 1 {\displaystyle x_{1}}. Notice stabilizer matris this does not require inverting the matrix.
Forward substitution [ edit ] The matrix equation L x = b can be written as a system of linear equations â 11 x 1 = b 1 â 21 x 1 + â 22 x 2 = b 2 â® â® â± â® â m1 x 1 + â m2 x 2 + ⯠+ â mm x m = b m {\displaystyle {\begin{matrix}\ell _{1,1}x_{1}&&&&&&&=&b_{1}\\\ell _{2,1}x_{1}&+&\ell _{2,2}x_{2}&&&&&=&b_{2}\\\vdots &&\vdots &&\ddots &&&&\vdots \\\ell _{m,1}x_{1}&+&\ell _{m,2}x_{2}&+&\dotsb &+&\ell _{m,m}x_{m}&=&b_{m}\\\end{matrix}}} Observe that the first equation ( â 11 x 1 = b 1 {\displaystyle \ell _{1,1}x_{1}=b_{1}} ) stabilizer matris involves x 1 {\displaystyle x_{1}}and thus one can solve for x 1 {\displaystyle x_{1}} directly.
The second equation only involves x 1 {\displaystyle x_{1}} and x 2 {\displaystyle x_{2}}and thus can be solved once one substitutes in the already solved value for x 1 {\displaystyle x_{1}}. Continuing in this way, the k {\displaystyle k} -th equation only involves x 1âŠx k {\displaystyle x_{1},\dots ,x_{k}}and one can solve for x k {\displaystyle x_{k}} using the previously solved values for x 1âŠx k â 1 {\displaystyle x_{1},\dots ,x_{k-1}}.
Note: errors in formulas below: The resulting formulas are: x 1 = b 1 â 11x 2 = b 2 â â 21 x 1 â 22â® x m = b m â â i = 1 m â 1 â stabilizer matrisi x i â mm. {\displaystyle {\begin{aligned}x_{1}&={\frac {b_{1}}{\ell _{1,1}}},\\x_{2}&={\frac {b_{2}-\ell _{2,1}x_{1}}{\ell _{2,2}}},\\&\ \ \vdots \\x_{m}&={\frac {b_{m}-\sum _{i=1}^{m-1}\ell _{m,i}x_{i}}{\ell _{m,m}}}.\end{aligned}}} A matrix equation with an upper triangular matrix U can be solved in an analogous way, only working backwards.
Applications [ edit ] Forward substitution is used in financial bootstrapping to construct a yield curve. Properties [ edit ] The transpose of an upper triangular matrix is a lower triangular matrix and vice versa. A matrix which is both symmetric and triangular is diagonal.
In a similar vein, a matrix which is both normal (meaning A stabilizer matris A = AA *, where A stabilizer matris is the conjugate transpose) and triangular is also diagonal.
This can be seen by looking at the diagonal entries of A * A and AA *. The determinant and permanent of a triangular matrix equal the product of the diagonal entries, as can be checked by direct computation. In fact more is true: the eigenvalues of a triangular matrix are exactly its diagonal entries. Moreover, each eigenvalue occurs exactly k times on the diagonal, where k is its algebraic multiplicity, that is, its multiplicity stabilizer matris a root of the characteristic polynomial p A ( x ) = det ( x I â A ) {\displaystyle p_{A}(x)=\det(xI-A)} of A.
In other words, the characteristic polynomial of a triangular nà n matrix A is exactly p A ( x ) = ( x â a 11 ) ( x â a 22 ) ⯠( x â a n n ) {\displaystyle p_{A}(x)=(x-a_{11})(x-a_{22})\cdots (x-a_{nn})}that is, the unique degree n polynomial whose roots are the diagonal entries of A (with multiplicities). To see this, observe that x I â A {\displaystyle xI-A} is also triangular and hence its determinant det ( x I â A ) {\displaystyle \det(xI-A)} is the product of its diagonal entries ( x â a 11 ) ( x â a 22 ) ⯠( x â a n n ) {\displaystyle (x-a_{11})(x-a_{22})\cdots (x-a_{nn})}.
[1] Special forms [ edit ] Unitriangular matrix [ edit ] If the entries on the main diagonal of a (upper or lower) triangular matrix are all 1, the matrix stabilizer matris called (upper or lower) unitriangular. Other names used for these matrices are unit (upper or lower) triangular, or very rarely normed (upper or lower) triangular.
However, a unit triangular matrix is not the same as the unit matrix, and a normed triangular matrix has nothing to do with the notion of matrix norm. All finite unitriangular matrices are unipotent. Strictly triangular matrix [ edit ] If all of the entries on the main diagonal of a (upper or lower) triangular matrix are also 0, the matrix is called strictly (upper or lower) triangular.
All finite strictly triangular matrices are nilpotent of index n as a consequence of the Cayley-Hamilton theorem.
Atomic triangular matrix [ edit ] Main article: Frobenius matrix An atomic (upper or lower) triangular matrix is a special form of unitriangular matrix, where all of the off-diagonal elements are zero, except for the entries in a single column. Such a matrix is also called a Frobenius matrix, a Gauss matrix, or a Gauss transformation matrix. Triangularisability [ edit ] A matrix that is similar to a triangular matrix is referred to as triangularizable.
Abstractly, this is equivalent to stabilizing a flag: upper triangular matrices are precisely those that preserve the standard flag, which is given by the standard ordered basis ( e 1âŠe n ) {\displaystyle (e_{1},\ldots ,e_{n})} and the resulting flag 0 < âš e 1 â© < âš e 1e 2 â© < ⯠< âš e 1âŠe n â© = K n. {\displaystyle 0<\left\langle e_{1}\right\rangle <\left\langle e_{1},e_{2}\right\rangle <\cdots <\left\langle e_{1},\ldots ,e_{n}\right\rangle =K^{n}.} All flags are conjugate (as the general linear group acts transitively on bases), so any matrix that stabilises a flag is similar to one that stabilizes the standard flag.
Any complex square matrix is triangularizable. [1] In fact, a matrix A over a field containing all of the eigenvalues of A (for example, any matrix over an algebraically closed field) is similar to stabilizer matris triangular matrix. This can be proven by using induction on the fact that A has an eigenvector, by taking the quotient space by the eigenvector and inducting to show that A stabilizes a flag, and is thus triangularizable with respect to a basis for stabilizer matris flag.
A more precise statement is given by the Jordan normal form theorem, which states that in this situation, A is similar to an upper triangular matrix of a very particular form.
The simpler triangularization result is often sufficient however, stabilizer matris in any case used in proving the Jordan normal form theorem. [1] [2] In the case of complex matrices, it is possible to say more about triangularization, namely, that any square matrix A has a Schur decomposition. This means that A is unitarily equivalent (i.e. similar, using a unitary matrix as change of basis) to an upper triangular matrix; this follows by taking an Hermitian basis for the flag.
Simultaneous triangularisability [ edit ] See also: Simultaneously diagonalizable A set of matrices A 1âŠA k {\displaystyle A_{1},\ldots ,A_{k}} are said to be simultaneously triangularisable if there is a basis under which they are all upper triangular; equivalently, if they are upper triangularizable by a single similarity matrix P.
Such a set of matrices is more easily understood by considering the algebra of matrices it generates, namely all polynomials in the A i{\displaystyle A_{i},} denoted K [ A 1âŠA k ]. {\displaystyle K[A_{1},\ldots ,A_{k}].} Simultaneous triangularizability means that this algebra is conjugate into the Lie subalgebra of upper triangular matrices, and is equivalent to this algebra being a Lie subalgebra of a Borel subalgebra.
The basic result is that (over an algebraically closed field), the commuting matrices AB {\displaystyle A,B} or more generally A 1âŠA k {\displaystyle A_{1},\ldots ,A_{k}} are simultaneously triangularizable. This can be proven by first showing that commuting matrices have a common eigenvector, and then inducting on dimension as before.
This was proven by Frobenius, starting in 1878 for a commuting pair, as discussed at commuting matrices. As for a single matrix, over the complex numbers these can be triangularized by unitary matrices. The fact that commuting matrices have a common eigenvector can be interpreted as a result of Hilbert's Nullstellensatz: commuting matrices form a commutative algebra K [ A 1âŠA k ] {\displaystyle K[A_{1},\ldots ,A_{k}]} over K [ x 1âŠx k ] {\displaystyle K[x_{1},\ldots ,x_{k}]} which can be interpreted as a variety in k-dimensional affine space, and the existence of a (common) eigenvalue (and hence a common stabilizer matris corresponds to this variety having a point (being non-empty), which is the content of the (weak) Nullstellensatz.
[ citation needed] In algebraic terms, these operators correspond to an algebra representation of the polynomial algebra in k variables. This is generalized by Lie's theorem, which shows that any representation of a solvable Lie algebra is simultaneously upper triangularizable, the stabilizer matris of commuting matrices being the abelian Lie algebra case, abelian stabilizer matris a fortiori solvable. More generally and precisely, a set of matrices A 1âŠA k {\displaystyle A_{1},\ldots ,A_{k}} is simultaneously triangularisable if and only if the matrix p ( A 1âŠA k ) [ A iA j ] {\displaystyle p(A_{1},\ldots ,A_{k})[A_{i},A_{j}]} is nilpotent for stabilizer matris polynomials p in k non-commuting variables, where [ A iA j ] {\displaystyle [A_{i},A_{j}]} is the commutator; for commuting A i {\displaystyle A_{i}} the commutator vanishes so this holds.
This was proven in ( Drazin, Dungey & Gruenberg 1951); a brief proof is given in ( Prasolov 1994, pp. 178â179). One direction is clear: if the matrices are simultaneously triangularisable, then [ A iA j ] {\displaystyle [A_{i},A_{j}]} is strictly upper triangularizable (hence nilpotent), which is preserved by multiplication by any A k {\displaystyle A_{k}} or combination thereof â it will still have 0s on the diagonal in the triangularizing basis.
Algebras of triangular matrices [ edit ] Binary lower unitriangular Toeplitz matrices, multiplied using F 2 operations. They form the Cayley table of Z 4 and correspond to powers of the 4-bit Gray code permutation. Upper triangularity is preserved by many operations: ⢠The sum of two upper triangular matrices is upper triangular. ⢠The product of two upper triangular matrices is upper triangular. ⢠The inverse of an upper triangular matrix, if it exists, is upper triangular. ⢠The product of an upper triangular matrix and a scalar is upper triangular.
Together these facts mean that the upper triangular matrices form a subalgebra of the associative algebra of square matrices for a given size. Additionally, this also shows stabilizer matris the upper triangular matrices can be viewed as a Lie subalgebra of the Lie algebra of square matrices of a fixed size, where the Lie bracket [ a, b] given by the commutator ab â ba. The Lie algebra of all upper triangular matrices is a solvable Lie algebra. It is often referred to as a Borel subalgebra of the Lie algebra of all square matrices.
All these results hold if upper triangular is replaced by lower triangular throughout; in particular the lower triangular matrices also form a Lie algebra. However, operations mixing upper and lower triangular matrices do not in general produce triangular matrices. For instance, the sum of an upper and a lower triangular matrix can be any matrix; the product of a lower triangular with an upper triangular matrix is not necessarily triangular either.
The set of unitriangular matrices forms a Lie group. The set of strictly upper (or lower) triangular matrices forms a nilpotent Lie algebra, denoted n. {\displaystyle {\mathfrak {n}}.} This algebra is the derived Lie algebra of b {\displaystyle {\mathfrak {b}}}the Lie algebra of all upper triangular matrices; in symbols, n = [ stabilizer matrisb ]. {\displaystyle {\mathfrak {n}}=[{\mathfrak {b}},{\mathfrak {b}}].} In addition, n {\displaystyle {\mathfrak {n}}} is the Lie algebra of the Lie group of unitriangular matrices.
In fact, by Engel's theorem, any finite-dimensional nilpotent Lie algebra is conjugate to a subalgebra of the strictly upper triangular matrices, that is to say, a finite-dimensional nilpotent Lie algebra is simultaneously strictly upper triangularizable. Algebras of upper triangular matrices have a natural generalization in functional analysis which yields nest algebras on Hilbert spaces.
Main articles: Borel subgroup and Borel subalgebra The set of invertible triangular matrices of a given kind (upper or lower) forms a group, indeed a Lie group, which is a subgroup of the general linear group of all invertible matrices.
A triangular matrix is invertible precisely when its diagonal entries are invertible (non-zero).
Over the real numbers, this group stabilizer matris disconnected, having 2 n {\displaystyle 2^{n}} components accordingly as each diagonal entry is positive or negative. The identity stabilizer matris is invertible triangular matrices with positive entries on the diagonal, and the group of all invertible triangular matrices is a semidirect product of this group and the group of diagonal matrices with ± 1 {\displaystyle \pm 1} on the diagonal, corresponding to the components.
The Lie algebra of the Lie group of invertible upper triangular matrices is the set of all upper triangular matrices, not necessarily invertible, and is a solvable Lie algebra. These are, respectively, the standard Borel subgroup B of the Lie group GL n and the standard Borel subalgebra b {\displaystyle {\mathfrak {b}}} of the Lie algebra gl n.
The upper triangular matrices are precisely those that stabilize the standard flag. The invertible ones among them form a subgroup of the general linear group, whose conjugate subgroups are those defined as the stabilizer of some (other) complete flag.
These subgroups are Borel subgroups. The group of invertible lower triangular matrices is such a subgroup, since it is the stabilizer of the standard flag associated to the standard basis in reverse order. The stabilizer stabilizer matris a partial flag obtained by forgetting some parts of the standard flag can be described as a set of block upper triangular matrices (but its elements are not all triangular matrices).
The conjugates of such a group are the subgroups defined as the stabilizer of some partial flag. These subgroups are called parabolic subgroups.
Examples [ edit ] The group of stabilizer matris upper unitriangular matrices is isomorphic to the additive group of the field of scalars; in the case of complex numbers it corresponds to a group formed of parabolic Möbius transformations; the 3Ã3 upper unitriangular matrices form the Heisenberg group. See also [ edit ] ⢠Gaussian elimination ⢠QR decomposition ⢠Cholesky decomposition ⢠Hessenberg matrix ⢠Tridiagonal matrix ⢠Invariant subspace References [ edit ] ⢠Axler, Sheldon (1996), Linear Algebra Done Right, Springer-Verlag, ISBN 0-387-98258-2 ⢠Drazin, M.
P.; Dungey, J. W.; Gruenberg, K. W. (1951), "Some theorems on commutative matrices", J. London Math. Soc., 26 (3): 221â228, doi: 10.1112/jlms/s1-26.3.221 ⢠Herstein, I. N. (1975), Topics in Algebra (2nd ed.), John Wiley and Sons, ISBN 0-471-01090-1 ⢠Prasolov, Viktor (1994), Problems and theorems in linear algebra, ISBN 9780821802366 ⢠Alternant ⢠Anti-diagonal ⢠Anti-Hermitian ⢠Anti-symmetric ⢠Arrowhead ⢠Band ⢠Bidiagonal ⢠Bisymmetric ⢠Block-diagonal ⢠Block ⢠Block tridiagonal ⢠Boolean ⢠Cauchy ⢠Centrosymmetric ⢠Conference ⢠Complex Hadamard ⢠Copositive ⢠Diagonally dominant ⢠Diagonal ⢠Discrete Fourier Transform ⢠Elementary ⢠Equivalent ⢠Frobenius ⢠Generalized permutation ⢠Hadamard ⢠Hankel ⢠Hermitian ⢠Hessenberg ⢠Hollow ⢠Integer ⢠Logical ⢠Matrix unit ⢠Metzler ⢠Moore ⢠Nonnegative ⢠Pentadiagonal ⢠Permutation ⢠Persymmetric ⢠Polynomial ⢠Quaternionic ⢠Signature ⢠Skew-Hermitian ⢠Skew-symmetric ⢠Skyline ⢠Sparse ⢠Sylvester ⢠Symmetric ⢠Toeplitz ⢠Triangular ⢠Tridiagonal ⢠Unitary ⢠Vandermonde ⢠Walsh ⢠Z Constant ⢠Adjugate ⢠Alternating sign ⢠Augmented ⢠Bézout stabilizer matris Carleman ⢠Cartan ⢠Circulant ⢠Cofactor ⢠Commutation ⢠Confusion ⢠Coxeter ⢠Distance ⢠Duplication and elimination ⢠Euclidean distance ⢠Fundamental (linear differential equation) ⢠Generator ⢠Gram ⢠Hessian ⢠Householder ⢠Jacobian ⢠Moment ⢠Payoff ⢠Pick ⢠Random ⢠Rotation ⢠Seifert ⢠Shear ⢠Similarity ⢠Symplectic ⢠Totally stabilizer matris ⢠Transformation Used in statistics Hidden categories: ⢠Articles with short description ⢠Short description matches Wikidata ⢠Wikipedia references cleanup from October 2020 ⢠All articles needing references cleanup ⢠Articles covered by WikiProject Wikify from October 2020 ⢠All articles covered by WikiProject Wikify ⢠All articles with unsourced statements ⢠Articles with unsourced statements from March 2021 â¢ Ø§ÙØ¹Ø±ØšÙØ© ⢠Català ⢠ÄeÅ¡tina ⢠Deutsch ⢠Eesti ⢠Español ⢠Esperanto ⢠Euskara â¢ ÙØ§Ø±Ø³Û ⢠Français ⢠Galego ⢠íêµìŽ â¢ Bahasa Indonesia ⢠Ãslenska ⢠Italiano ⢠ע×ך×ת ⢠Lombard ⢠Magyar ⢠Nederlands â¢ æ¥æ¬èª ⢠Norsk bokmÃ¥l ⢠Norsk nynorsk ⢠ÐлÑк ЌаÑОй ⢠Stabilizer matris ⢠Português ⢠РÑÑÑкОй ⢠SlovenÅ¡Äina ⢠Suomi ⢠Svenska ⢠஀மிஎ௠⢠TÃŒrkçe ⢠УкÑаÑМÑÑка ⢠ارد٠⢠Tiếng Viá»t â¢ äžæ Edit links ⢠This page was last edited on 6 April 2022, at 23:16 (UTC).
⢠Text is available under the Creative Commons Attribution-ShareAlike License 3.0 ; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization. ⢠Privacy policy ⢠About Wikipedia ⢠Disclaimers ⢠Contact Wikipedia ⢠Mobile stabilizer matris ⢠Developers ⢠Statistics ⢠Cookie statement ⢠â¢ã³ããçŠäžããã£ãšå®¶ã«ããããã§ã³ãã倪ãã»ã»ã» ãã®ãŸãŸãããã°ããªããšæã£ãã®ã§ä¹ ãã¶ãã«ãã€ãšããé 匵ãããšã«ããŸããïŒïŒ ãã€ãšããéå§ãæçµææ®µãæå ¥ïŒïŒ ä»åã¯çæéã§çµæãåºãããã£ãã®ã§ãæçµææ®µããæå ¥ã»ã»ã»ïŒ ãã®çµæã»ã»ã» ãŸãã¯ãã¡ããã芧ãã ããã ã©ãã§ããïŒ ããã1é±éã§ãã®å¹æã§ãã»ã»ã»ïŒ å±¥ããšãã¡ãã¡ã«ãªã£ãŠããŸã£ãŠããã¹ãããŒãšããããã£ãšå ¥ãããã«ãªããŸããã ãšããããšã§ãä»åã¯ãã®ãã€ãšããæ¹æ³ãã·ã§ã¢ããããšæããŸãïŒ ã€ããã®ãããããã€ãšããæ¹æ³ã玹ä»ã»ã»ã»ïŒïŒ ãã®æ¹æ³ãšã¯ã»ã»ã»ãã°ãããã°ã©ãã©ã¹ããããå±¥ããããšïŒïŒ ã°ã©ãã©ã¹ãããã¯ãç¬èªéçºèšèšã§12åã®æ©èœãã€ããŠããã§ããã©ãã¡ã€ã³ã®çŸè广ã ããããªããŠã ããããã€ãšãããµããŒããšããŠãã£ã¡ãåªç§ã§ãïŒïŒ ã°ã©ãã©ãã€ãšããæ³ïŒ ã€ããã®äœ¿ãæ¹ïŒ ç§ã¯åºæ¬ãå®¶äºãããæã«å±¥ããŠããŸãïŒ ããã«å ããŠãæè¿ã¯éåäžè¶³è§£æ¶ã®ããã«çãã¬ãšæé žçŽ éåãããŠãããã§ããããã®æã«ãå±¥ããŸãã ãããã°ã©ãã©ã€ããŠããããã广åºãŠãæ°ãããŸãã»ã»ã»ïŒïŒ ãã ã£ãšããŸã£ãŠãããããããã€ãããåããã®ãâ ãã€ãšããã®ããã«éåãšãæ£æ©ãªããåãå ¥ããŠãã人ã¯çµ¶å¯Ÿå±¥ãã®ãããããããŸãïŒïŒ ãšããããšã§ããããããªäººã«æè¿ã§ã¯ã°ã©ãã©æšããŸãã£ãŠãŸãç¬ ä»¥äžã§ã¯ãç¹ã«å€ãã£ã質åã«ã€ããããçããããã®ããŸãšããŸããïŒ çå°ã䌞ã³ããããªãïŒ ãã¡ããã¡ã䌞瞮æ§ãããã®ã§å€§äžå€«ïŒïŒ ãããªæãã§ã°ã©ãã©ã¹ãããã®äŒžçž®æ§ã¯ãã¡ããã¡ããããã§ãïŒ ã»ãŒæ¯æ¥æŽæ¿¯ããŠããã©è¡°ããæãã¯ä»ã®ãšããæããŸããã å±¥ãã®ã倧å€ããã ãã©ã»ã»ã» æ £ããªããã¡ã¯ãããã«å€§å€ããã»ã»ã»ïŒ çå§è©Šãã人ãªãããããšæããŸããå±¥ãã®ã倧å€ãªãã§ãããã ã°ã©ãã©ãå±¥ãã®çµæ§å€§å€ã§ãïŒïŒç¬ ãã ãæ £ãããšæ®éã«å±¥ããããã«ãªããŸããïŒïŒ ç§ãæåã¯å€§å€ã§ããç¬ ããç ŽãããããªãïŒ ã°ã©ãã©ã¹ãããã¯ãã¡ããã¡ãé äžã§ãïŒïŒ çå§ã¹ããããè²·ã£ãŠãè²·ã£ãŠããéããªãã®ã«ç¹ã«è² æ ã®ããããããè¡ã®ãšãããé¿ããŠããŸã£ããšããæ¹ãããã®ã§ã¯ã»ã»ã»ïŒ ç§ããã®çµéšãã£ãŠæãã£ããã§ãããã°ã©ãã©ã¹ãããã¯èŠãŠã®éãè¡äžãäºéè£åŒ·ãããŠããŠããããé äžã«ã§ããŠãŸãïŒïŒ 1çãäœãã«ã²ã£ãããŠäŒç·ãããããŸããããçå°èªäœã®äŒžçž®æ§ãããã®ã§ãçå§åãå€ãã£ãŠãªãã§ãã»ã»ã»ïŒïŒ çãŠãã ãã§ç©ããã®ïŒ ç©ãããšãããããã¹ã¿ã€ã«ãè¯ããªããŸããïŒ ã§ããããšããšè»œãéåãšãããŠãã人ã¯ãã广ã§ãããããªãããªã»ã»ã»ïŒ ã°ã©ãã©ã¹ãããã®æå€§ã®æ©æµã¯ãã£ã±ãçããŠãããšãã«ã¹ã¿ã€ã«ãè¯ããªãããšã ã°ã©ãã©ã¹ãããã¯ãèã ããããªããŠãè ¹ãŸã§ãã£ããã«ããŒã ãªã®ã§ããããããã ã£ãšã²ããããŠãããŠãããã«ãœã£ãããè ¹ãã¹ãããªããŸãã ãããç©ããŠãããã§ã¯ãªããã§ããã©ãç©ãèŠãã¯ããªãããŸãïŒ ãŸããç§ã¯ããšããšè»œãéåãšããåãå ¥ããŠãããã§ããã©ãã°ã©ãã©äœ¿ã£ãŠããæããã«å¹æãäžãã£ãŠãããã«æããŸãã»ã»ã»ïŒïŒ ããšãããã倧ãããã€ã³ããªãã§ãããå å§åã§å§è¿«ãããããšã§é£ã¹éã鲿¢å¹æãããªããããšæããŸãã ãã ãæè¿ããããç¥ããã¯ãããŠããããããå ¬åŒãµã€ãã§ãååãã«ãªãããšãå€ããªã£ãŠããŸããã»ã»ã»ïŒ stabilizer matris 次åã¯10æäžæ¬ã®å ¥è·åä»ã«ãªã£ãŠããŸãã¿ããã§ãã ç§ã远å ã§è²·ãããšãããååãäžã§1ã¶æããã£ãŠãŸãã»ã»ã» 倫ãäžå«ã«äœ¿ã£ãŠããã¢ã«ãŠã³ãã¯åšã®ååã§ãããäžå«çžæã®å®¹å§¿ãšæµ®æ°å€«ã®ãµã€ã³ãªèšåã«è¡æïŒ æµ®æ°ã®èšŒæ ãèªåã§ã€ãã¿ãåè°é¢å©ãããŸã§ã®ãµã¬åŠ»ã®å¥®éãã€ã¥ã£ãå®é²ã³ããã¯ãšãã»ã€ãåšãçãŸããŠãããè²å ãå®¶äºãäžåãããå®¶ã®ããšã¯ç¡é¢å¿ãã²ãŒã äžæ§ã®å€«ãèª²éæ²Œã«ããããå°é£ãã䜿ãæãããå®¶ã®ãéã«ãŸã§æãåºãå§æ«ãæå¥ââã²ãŒã å ã§æµ®æ°ãŸã§ãããŒããããæ©ãããã«äŒã£ãŠãã£ã±ããã¥ã£ã£ãŠããããªãããæ°æã¡ãããããããã«ãªããããã俺ãããªãæ°æã¡ã ããããããããªãâŠâŠãã£ã±ãâŠâŠããã£ã£ããã®ã²ãŒã ã¢ã«ãŠã³ãåã®ããããã£ãŠâŠâŠâŠ ã³ã£ãããããããªæµ®æ°å€«ïŒ ããããããããåãšãããã°ãããæµ®æ°LINEãšãããããªã¢ã«ã§ãã ããããå€«ã®æ§åãããã©ãã©ãæµ®æ°ãæããã«ãªã£ãŠãã£ãŠâŠâŠ ããã¡ãã®äœåã¯ãäžæ¥åç§ ååçããšåãå 容ãåé²ããŠãããŸãã®ã§ãéè€è³Œå ¥ã«ã¯ãæ°ãä»ããã ããããââé¿åŠããªããã°åäŸãªããŠãããã§ãããšæã£ãŠãââ34æ³ã®ç¿å(ãããã)ã¯çµå©7幎ç®åäŸãªããå人ã2人ç®ã®åºç£ã®è©±ãããŠããäžãäžåŠæ²»çãç¶ããŠããã倫ã¯åªããååçã ããåšå²ã®åŠåš ã矩æ¯ããã®ãã¬ãã·ã£ãŒãæåŸ ãšèœèã®ç¹°ãè¿ãã«ãåäŸã欲ãããšé¡ã£ãŠããã ããªã®ã«âŠãªãã§ç§ã«ã¯å¶ããªãã®ïœ¥ïœ¥!?ããšçŠããäžå®ãåãâŠã åŠåš ãåºç£ãå®¶æïœ¥ïœ¥ïœ¥æ®éã®å¹žããšã¯äžäœäœãªã®ãââïŒ30代女æ§ã®ãªã¢ã«ãšãã®åšããåãå·»ã人ã ã®æçŠãããæ³ããæãïŒ åã©ããã§ããã£ãŠåœç¶ã®ãããªããšãšæãããã¡ã ãã©ã»ã»ã» åã©ãããã人ãããªã人ãã©ã¡ãã«ãèªãã§æ¬²ããäœåã§ãã åºç£ãåŠåš ããããŠå®¶æã«ãŸã€ããããããç°ãªãäºæ ãæã£ãç»å Žäººç©ãã¡ã®èè€ãæãããŠããŸãã ããŸãã²ãŒã ããŠãâŠãå®¶äºãšè²å ã§æ¥ã ç²åŽå°æã®åŠ»ã»æ¥çŸã¯å®¶ã®äºããèªåã®è¶£å³ã§ããã¹ããã²ãŒã ãåªå ãã倫ã«é ãæ©ãŸããŠããããããŒïŒé¢šéªïŒä¿ºä»äºããããç§»ããªãã§ãããŒãŒããæ¥ãæ¥çŸã¯é£æ¥ã®ç²ãããäœèª¿ã厩ããŠããŸããã倫ã¯å¿é ããæ§åããªãæããã¹ããã²ãŒã äžæ§ã倫ã®åšãžã®ææ ã¯ç¢ºãã«ããããã»ãšãã©ã®äºã劻ã«äžžæãã§ç²Ÿç¥çã«è¿œã蟌ãŸããŠããæ¥çŸâŠâŠããããªæãå人ããã®å§ãã§åäŸã®äºã ãã§ãªãå®¶å šäœã®åé¡ã解決ããŠããããšèšããäŒèª¬ã®ãããŒã·ãã¿ãŒãã®ååšãç¥ããå¢ãã§äŸé Œãããäºã«ãäžã®æ¯èŠªãæ±ããåé¡ããã¡ãŸã¡è§£æ±ºããŠããããšåã®ãããŒã·ãã¿ãŒã«æåŸ ãæ±ãæ¥çŸã ã£ãããåœæ¥å®¶ã«èšªã⊠ãã¡å€«ãã¹ã¿ãŒã¿ãããªãããŒã·ãã¿ãŒãããŠãããã解決ããŠãããæŒ«ç»ãæŠé£ãã¡ãããªãã¯ãºãªã®ããããŸã£ãŠã¹ãããªæåŒ·ãïŒ ä»å玹ä»ããæŒ«ç»ã¯å šéšãããŸããçåœãã£ãŠãµãŒãã¹ã§è©Šãèªã¿ã§ãããã§ããã ããããã£ã¡ããããã§ãã ç°¡åã«èª¬æãããšã»ã»ã» ⢠éå é¡ããã°ã ⢠ã³ããã¯ã®ã»ãŒã«ããïŒ â¢ 1å·»ç¡æã§èªããäœåå€ãïŒ ãšèšãæãã§ããæ¬²ããèŠçŽ ãã¹ãŠããã€ãŸã£ãŠããã§ãããã ãã€ã³ãéå ããã°ããŠããã€ã³ãè³Œå ¥æãšäœ¿çšæã§ãããããã€ã³ããè²°ããŸãã ãã£ã³ããŒã³æéãªã10000ãã€ã³ãè³Œå ¥ã§2500ãã€ã³ãç²åŸãäœ¿çšæã«1500ãã€ã³ãã§4000ãã€ã³ããæ»ã£ãŠããŸãã»ã»ã»ïŒ ããã30000ãã€ã³ãåè³Œå ¥ãããæå€§24000ãã€ã³ãããã¯ãšããã¡ããã¡ããåŸã§ãã ãã®äžãã³ããã¯ã®ã»ãŒã«ããããšããã»ã»ã» ãããïŒå·»ç¡æã§èªããæŒ«ç»ãå€ããŠãæ®éã«æã€ã¶ããµã€ããšããŠãåªç§ã»ã»ã»ïŒ