Atom karbon memiliki elektron valensi sebanyak

atom karbon memiliki elektron valensi sebanyak

• Perhatikan diagram percobaan Thomson berikut! Berdasarkan diagram tersebut, pernyataan yang tepat tentang sinar katoda adalah …. A. sinar katoda yang dihasilkan tergantung dari zatnya B. sinar katoda dibelokkan ke pelat logam positif C. sinar katoda bergerak dari S ke R D. muatan elektron 1,6 × 10^−9 Coulomb E. sinar katoda tidak dibelokkan medan magnet Beberapa sifat sinar katode yaitu sebagai berikut : • Dipancarkan oleh plat bermuatan negatif dalam tabung hampa apabila dilewati listrik bertegangan tinggi • Berjalan dalam garis lurus • Dapat memendarkan berbagai jenis zat termasuk gelas • Bermuatan negatif sehingga dapat dibelokkan oleh medan listrik dan medan magnet • Memiliki sifat cahaya dan sifat materi • Tidak tergantung pada jenis gas dan jenis elektrode.

Kunci Jawaban : B 2. Massa rata-rata satu atom unsur Q adalah 2,654 × 10^−23 gram dan atom karbon memiliki elektron valensi sebanyak satu atom karbon (C-12) adalah 1,993 × 10^−23 gram. Massa atom relatif (Ar) Q adalah …. Kunci Jawaban : C 3. Diagram susunan partikel dari unsur A dan B adalah sebagai berikut: Berdasarkan diagram tersebut, notasi unsur A dan B yang benar adalah …. Notasi suatu unsure adalah A X Z, dengan Z= nomor atom dan A = nomor massa Nomor atom = jumlah proton Nomor Massa = jumlah proton dan neutron Proton dan neutron terletak dalam inti atom.

Jumlah electron dari suatu atom = jumlah proton Electron berada pada lintasan kulit atom dengan rumus 2.

atom karbon memiliki elektron valensi sebanyak

dan n adalah nomor kulit. Maka pada kulit pertama maksimal ditempati oleh 2. = 2 elektron. Kulit kedua maksimal ditempati oleh 2. = 8 elekron Kulit ketiga maksimal ditempati oleh 2.

atom karbon memiliki elektron valensi sebanyak

= 8 elektron Electron boleh menempati kulit selanjutnya juga dikulit tersebut sudah terisi penuh oleh electron. Electron pada kulit terluar tidak boleh lebih dari 8. Kunci Jawaban : B 4. Perhatikan data afinitas elektron berikut! Pernyataan yang tepat untuk kedua unsur tersebut dalam mencapai kestabilan adalah …. A. ion X− lebih stabil daripada atom X B. ion Y− lebih stabil daripada atom Y C.

Y lebih mudah melepas elektron daripada X D. X lebih bersifat nonlogam daripada Y E. X lebih mudah menarik elektron daripada Y Afinitas electron didefinisikan sebagai kalor reaksi saat elektron ditambahkan kepada atom netral gas, yakni dalam reaksi.

Afinitas electron dari kiri ke kanan (dalam satu perioda semakin besar). Semakin besar afinitas electron semakin besar kecenderungan suatu atom menangkap electron dari atom lain sehingga menjadi ion -1. Afinitas electron X bernilai positif artinya unsur X harus menyerap kalor untuk bias mengikat electron sehingga menjadi ion X –.

X lebih stabil daripada X –. kemungkinan X adalah unsur logam. Y bernilai negative artinya unsur Y melepaskan kalor untuk menjadi ion Y –. Unsur Y terletak sebelah kanan. Kemungkinan unsur Y adalah unsure non logam. Y – lebih stabil dari pada atom Y. Kunci Jawaban : B 5. Pasangan senyawa dari unsur-unsur berikut: 6K, 8L, 15M, 17Q, 9R, memenuhi aturan oktet, kecuali …. A. KL2 dan KQ4 B. KQ4 dan Q2L C.

MQ5 dan KL D. MQ3 dan KR4 E. KQ4 dan KL2 Kaidah oktet adalah suatu kaidah sederhana dalam kimia yang menyatakan bahwa atom-atom cenderung bergabung bersama sedemikiannya tiap-tiap atom memiliki delapan elektron. Konfigurasi elektron atom tersebut sama dengan konfigurasi elektron pada gas mulia. Kaidah ini dapat diterapkan pada unsur-unsur golongan utama, utamanya karbon, nitrogen, oksigen, dan halogen.

Kaidah ini juga dapat diterapkan pada unsur logam seperti natrium dan magnesium. Kunci Jawaban : C 6. Perhatikan data hasil percobaan berikut! Jenis ikatan yang terdapat pada zat V dan X secara berturut-turut adalah …. A. ikatan logam dan ikatan ion B. ikatan logam dan kovalen polar C. ikatan kovalen polar dan kovalen nonpolar D. ikatan logam dan ikatan kovalen nonpolar E. ikatan ion dan kovalen nonpolar Ikatan kimia terdiri dari ikatan ion dan ikatan kovalen.

Ciri-ciri ikatan ion diantaranya; • Terjadi pelepasan dan penangkapan elektron • Mempunyai titik didih dan titik leleh yang tinggi • Dapat larut dalam air • Lelehan dan larutannya dapat menghantarkan listrik Pada ikatan kovalen terjadi pemakaian electron secara bersama dan mempunyai titik didih dan titik leleh yang rendah.

Berdasarkan kepolarannya ikatan Kovalen terdiri dari ikatan kovalen polar dan non polar. Ciri-ciri ikatan kovalen polar adalah : • Bentuk molekul asimetris • Larutannya dapat atom karbon memiliki elektron valensi sebanyak listrik Sedangkan ikatan kovalen non polar mempunyai ciri-ciri : • Bentuk molekul simetris • Larutannya tidak dapat menghantarkan Kunci Jawaban : D 7. Gambar struktur Lewis senyawa SO2 yang paling tepat adalah … (nomor atom S = 16; O = 8).

Struktur Lewis adalah struktur dengan gambaran elekron valensi atom-atomnya. Penggabungan electron valensi dari suatu atom dengan atom lainnya akan memenuhi kaidah octet dimana atom tersebut akan stabil jika dikelilingi oleh 8 elektron.

Dan semua electron berpasangan. Kunci Jawaban : B 8. Konfigurasi elektron dari unsur D dan E. D = [He] 2s2 2p5 E = [Ne] 3s2 3p3 Rumus kimia dan bentuk molekul yang terbentuk jika kedua unsur tersebut berikatan adalah …. A. ED, linear B. ED5, bipiramida trigonal C. E2D, linear D.

ED2, planar bentuk V E. E4D, tetrahedron Jika unsur D dan unsur E membentuk ikatan kemungkinan rumus kimia senyawa yang terbentuk adalah ED 3 (oktet) dan ED 5 (tidak oktet).

Bentuk molekul yang dihasilkan bergantung tipe molekul senyawanya yang mengikuti rumus AX nE m, dengan n adalah jumlah domain electron ikatan dan m adalah jumlah domain electron bebas. ED 3 mempunyai tipe AX 3E (polar) bentuk molekulnya trigonal piramida sedangkan ED 5 mempunyai tipe molekul AX 5 (nonpolar) bentuk molekul trigonal bipiramida.

Kunci Jawaban : B 9. Diberikan lima persamaan reaksi oksidasi atau reduksi yang belum setara. (1) MnO^4- → MnO4^2- (2) SO2 → SO3 (3) C2H4 atom karbon memiliki elektron valensi sebanyak C2H6 (4) FeO → Fe2O3 (5) Cl2 + 2e- → 2Cl- Yang termasuk reaksi reduksi adalah… A.

(1), (2), dan (3) B. (1), (3), dan (4) C. (1), (3), dan (5) D. (2), (3), dan (4) E. (2), (3), dan (5) Reaksi Redoks terdiri dari reaksi reduksi dan reaksi oksidasi.

Pada reaksi reduksi terjadi : • Pelepasan oksigen • Pengikatan electron • Penurunan bilangan oksidasi Kunci Jawaban : C 10. Perhatikan persamaan reaksi redoks berikut! Sn(s) + 4HNO3(aq) → SnO2(s) + 4NO2(g) +2H2O(l) Bilangan oksidasi dari zat oksidator dan hasil reduksinya berturut-turut adalah …. A. +1, Sn B. +1, SnO2 C. +4, NO2 D. +5, NO2 E. atom karbon memiliki elektron valensi sebanyak, HNO3 Oksidator adalah zat yang menyebabkan zat lain mengalami oksidasi.

Pada reaksi Sn( s) + 4HNO3( aq)→ SnO2( s)+ 4NO2( g)+2H2O( l) Zat yang bertindak sebagai oksidator adalah HNO 3 dan hasil reduksinya adalah NO 2. Biloks N pada HNO 3 adalah +5 dan biloks N pada NO 2 adalah +4. Kunci Jawaban : D 11.

Tabel berikut menyatakan rumus dan nama senyawa. Pasangan yang tepat antara rumus dan nama senyawanya adalah …. A. (1) dan (3) B. (1) dan (4) C. (2) dan (3) D. (2) dan (4) E. (3) dan (5) Tabel rumus senyawa dan nama senyawa Kunci jawaban : D 12. Unsur belerang (S) dan unsur oksigen (O) dapat membentuk dua macam senyawa. Persentase unsur penyusun senyawa disajikan dalam tabel berikut.

Perbandingan massa unsur oksigen dalam dua senyawa tersebut sesuai Hukum Dalton adalah …. A. 1 : 1 B. 1 : 2 C. 2 : 1 D. 2 : 3 E. 3 : 2 Jika massa senyawa sama-sama 100 gram dan massa unsur S dalam kedua senyawa sama, Misal pada senyawa I 50% massa S = 1 gram maka 50% massa O = 1 gram Dan pada senyawa II 40% massa S = 1 grammaka 60% massa O = 1,5 gram Perbandingan massa O pada senyawa I dan II adalah 1 : 1,5 atau 2 : 3 Kunci jawaban : D 13.

Perhatikan tabel berikut! Jika massa Pb yang digunakan sebanyak 25 g, massa S yang diperlukan sebanyak …. A. 1 gram B. 2 gram C. 4 gram D. 5 gram E. 6 gram Berdasarkan percobaan nomor 1 dan no 3 didapatkan perbandingan massa Pb dan S dalam PbS adalah 10 : 1,6 atau 30 : 4,8. Jika 25 gram Pb akan tepat bereaksi dengan S sebanyak Kunci jawaban : C 14.

Sebanyak 20 L campuran gas propana (C3H8) dan butena (C4H8) dibakar pada (T,P) sesuai persamaan: C3H8(g) + 5O2(g) → 3CO2(g) + 4H2O(l) C4H8(g) + 6O2(g) → 4CO2(g) + 4H2O(l) Volume gas CO2 setelah pembakaran adalah 68 L.

Volume gas propana dan butena dalam campuran berturut-turut sebanyak …. A. 8 L dan 12 L B. 10 L dan 10 L C. 12 L dan 8 L D. 14 L dan 6 L E. 16 L dan 4 L 20 liter campuran propane dan butena dibakar sempurna menghasilkan 68 liter CO 2.

Misalkan volume propane adalah x, maka C 3H 8 (g) + 5O 2 (g) → 3CO 2 (g) + 4H 2O (l) x 3x C 4H 8 (g) + 6O 2 (g) → 4CO 2 (g) + 4H 2O (l) 20-x 80-4x 3x + 80 – 4x = 68 -x = -12 x= 12maka vo lu me C 3H 8 adalah 12 liter dan volume C 4H 8 adalah 8 liter Kunci Jawaban : C 15.

Berikut ini grafik titik didih 3 buah isomer dari senyawa C5H12. Berdasarkan grafik dapat diprediksi senyawa P, Q, dan R tersebut berturut-turut adalah …. Isomer dari C 5H 12 ada 3 yaitu : n-pentana, 2-metil butana, dan 2,2-dimetil propana. Semakin banyak jumlah cabang semakin rendah atom karbon memiliki elektron valensi sebanyak didihnya. Kunci Jawaban :E 16. Tabel berikut berisi data hasil penyulingan fraksi-fraksi minyak bumi. Pasangan data yang berhubungan dengan tepat adalah nomor ….

A. (1) dan (2) B. (1) dan (3) Atom karbon memiliki elektron valensi sebanyak. (2) dan (3) D. (2) dan (4) E. (3) dan (4) Fraksi hasil penyulingan minyak bumi : Kunci Jawaban: B 17.

Tabel berikut ini berisi polutan/zat pencemar di udara dan dampak yang ditimbulkannya. Pasangan data yang berhubungan dengan tepat antara polutan dan akibat yang ditimbulkannya adalah nomor …. A. (1) dan (2) B. (1) dan (3) C. (2) dan (3) D. (2) dan (4) E. (3) dan (4) Kunci Jawaban: D 18. Berikut ini beberapa peristiwa dalam kehidupan sehari-hari: (1) Pembakaran sampah (2) Es mencair (3) Memasak air (4) Pembuatan garam dari air laut (5) Respirasi Pasangan peristiwa yang termasuk reaksi eksoterm adalah ….

A. (1) dan (2) B. (1) dan (5) C. (2) dan (5) D. (3) dan (4) E. (4) dan (5 Pada reaksi eksoterm terjadi pelepasan kalor oleh sistem. Pembakaran sampah, menghasillkan kalor Es mencair, menyerap kalor Memasak air, menyerap kalor Membuat garam dari air laut melalui penguapan dari sinar matahari membutuhkan kalor Respirasi, menghasilkan kalor. Kunci Jawaban : B 19. Diketahui data energi ikat beberapa ikatan sebagai berikut: C ≡ C : +839 kJ/mol C – C : +348 kJ/mol C – H : +413 kJ/mol H – H : +436 kJ/mol Nilai ΔH untuk reaksi tersebut adalah ….

A. -2000 kJ/mol B. -1652 kJ/mol C. -826 kJ/mol D. -348 kJ/mol E. -289 kJ/mol Energi pemutusan ikatan = energy ikat C = C + atom karbon memiliki elektron valensi sebanyak x energy ikat H-H) = +839 + (2x 436 ) = 1711 kj.mol -1 Energi pembentukan ikatan = energy ikat C-C + (4 x energi ikat C-H) = 348 + (4 x 413) = 2000 kj.mol -1 ∆H reaksi = Energi pemutusan ikatan – Energi pembentukan ikatan = 1711 – 2000 = -289 kj.mol -1 Kunci Jawaban : E 20. Diketahui reaksi kesetimbangan: Cu2+(aq) + 4NH3(aq) ⇌ (Cu(NH3)4)2+(aq) Jika volumenya diperkecil, sedangkan suhunya tetap, reaksi akan mengalami pergeseran kesetimbangan apabila terjadi perubahan jumlah ion, yaitu ….

A. Cu2+ bertambah, Kc bertambah, warna [Cu(NH3)4]2+ pekat B. Cu2+ bertambah, Kc berkurang, warna [Cu(NH3)4]2+ pekat C. Cu2+ berkurang, Kc bertambah, warna [Cu(NH3)4]2+ pudar D. Cu2+ berkurang, Kc tetap, warna [Cu(NH3)4]2+ pekat E. Cu2+ berkurang, Kc berkurang, warna [Cu(NH3)4]2+ pudar Faktor-faktor yang mempengaruhi reaksi kesetimbangan diantaranya adalah konsentrasi larutan, suhu, tekanan dan volume. Apabila volume diperkecil maka reaksi akan bergeser kearah koefisien yang kecil, maka Cu 2+ berkurang, Kc tetap (karena suhunya tetap), dan warna semakin pekat Kunci Jawaban : D 21.

Diketahui reaksi sebagai berikut: A2(g)+B2(g) ⇌ 2AB(g). mula-mula direaksikan 0,5 mol A2 dengan 0,5 mol B2 dalam ruang 1 liter pada suhu 27oC.

Ternyata setelah kesetimbangan tercapai terdapat 0,3 mol gas AB. Jika tekanan total gas pada reaksi itu adalah 10 atmosfir, nilai Kp untuk reaksi tersebut adalah …. A. 0,30 B. 0,35 C. 0,73 D. 2,3 E.

3,5. A 2(g) + B 2(g) → 2AB (g) M 0,5 mol 0,5 mol R 0,15 mol 0,15 mol stb 0,35mol 0,35 mol 0,3 mol mol total = ( 0,35 + 0,35 + 0,3) mol = 1 mol Untuk P B2 dan P AB dilakukan perhitungan dengan cara yang sama P B2 = P A2 = 3,5 atm P AB = 3 atm Kp = 0,73 Kunci jawaban C 22. Perhatikan persamaan reaksi berikut!

NH3(g) + BF3(g) → NH3BF3(g) H3PO4(aq) → H+(aq) + H2PO42-(aq) PO4-3(aq) + H2O(l) ⇌ HPO43-(aq) + H+ Urutan yang sesuai dengan konsep asam-basa Arrhenius, Bronsted-Lowry dan Lewis adalah …. A. (1), (2), (3) B. (2), (1), (3) C. (2), (3), (1) D. (3), (1), (2) E.

(3), (2), (1) Konsep asam basa Arrhenius, Bronsted-Lowry dan Lewis Asam menurut Arrhenius adalah senyawa yang dapat melepaskan H + jika dilarutkan dalam air Asam menurutBronsted –Lowry adalah asam adalah donor proton (H +) pada zat lain Asam menurut Lewis adalah senyawa yang mau menerima pasangan electron (akseptor elektron) Urutan yang sesuai dengan teori asam Arrhenius, Bronsted-Lowry dan Lewis adalah (2), (3), (1) kunci jawaban C 23.

Perhatikan data hasil uji terhadap 2 jenis larutan dengan menggunakan 4 jenis indikator! Perkiraan pH untuk larutan X dan larutan Y secara berurutan adalah …. A. 3,2 – 4,4 dengan 5,8 – 8,3 B.

4,4 – 4,8 dengan 4,7 – 5,4 C. 4,8 – 5,4 dengan 4,4 – 4,8 D. 4,7 – 8,3 dengan 3,2 – 4,0 E. 8,3 – 14,0 dengan 3,2 – 4,2 Melihat data diatas, maka Dapat disimpulkan perkiraan pH larutan X adalah 8,3 – 14,0 sedangkan perkiraan pH larutan Y adalah 3,2 – 4,2 Atom karbon memiliki elektron valensi sebanyak jawaban: E 24. Perhatikan data hasil titrasi antara Ba(OH)2 dengan larutan asam asetat 0,15 M berikut!

atom karbon memiliki elektron valensi sebanyak

Berdasarkan data tersebut, massa Ba(OH)2 yang bereaksi adalah … (Ar Ba = 56 gram.mol-1; O = 16 gram.mol-1; H = 1 gram.mol-1). A. 0,54 gram B. 0,30 gram C. 0,27 gram D. 0,15 gram E. 0,10 gram Volume rata – rata penggunaan larutan CH 3COOH = 40 ml Reaksi titrasi : Ba(OH) 2(aq) + 2CH 3COOH (aq) → Ba(CH 3COO) 2(aq) + 2H 2O (l) Pada reaksi yang setara, mol Ba(OH) 2 = ½ mol CH 3COOH Mol CH 3COOH = Volume x Molaritas Mol CH 3COOH = 40 ml x 0, 15 M Mol CH 3COOH = 6 mmol mol Ba(OH) 2 = 0,5 x 6 mol Ba(OH) 2 = 3 mmol = 0,003 mol massa Ba(OH) 2 = mol.

Mr massa Ba(OH) 2 = 0,03 x 90 massa Ba(OH) 2 = 0,27 gram (kunci jawaban C) 25. Perhatikan tabel data yang belum lengkap dari hasil uji hidrolisis larutan garam berikut ini! Data yang tepat untuk mengisi bagian titik- titik pada nomor larutan (1), (2), dan (3) berturut-turut adalah ….

• Garam yang berasal dari asam kuat dengan basa kuat tidak mengalami hidrolisis • Garam yang berasal dari asam kuat dengan basa lemah mengalami hidrolisis parsial menghasilkan H + (memerahkan lakmus biru) • Garam yang berasal dari asam lemah dengan basa kuat mengalami hidrolisis parsial menghasilkan OH – (membirukan lakmus merah) • Garam yang berasal dari asam lemah dan basa lemah mengalami hidrolisis total bersifat netral apabila kekuatan asam dan basa lemah tersebut sama • Garam (NH 4) 2SO 4 berasal dari basa lemah NH 4OH dan asam kuat H 2SO 4, memerahkan lakmus biru,hidrolisis parsial, menghasilkan H + • Garam NaF berasal dari basa kuat NaOH dan asam lemah HF, membirukan lakmus merah, hidrolisis parsial, menghasilkan OH – • Garam HCOOK berasal dari asam lemah HCOOH dan basa kuat KOH, membirukan lakmus merah, hidrolisis parsial, menghasilkan Atom karbon memiliki elektron valensi sebanyak – Yang sesuai untuk data diatas adalah kunci jawaban B 26.

Sebanyak 100 mL H2SO4 0,1 M dicampur dengan 100 mL larutan NH3 0,2 M. Jika Kb NH3 = 1 × 10^-5, pH campuran yang terbentuk adalah …. A. 5 – log 2 B. 5 + log 1 C. 5 + log 2 D. 5,5 + log 5 E. 6,5 – log 1 Kunci Jawaban: B 27. Sebanyak 100 mL AgNO3 0,01 M dicampur dengan 100 mL H2SO4 0,01 M. Diketahui Ksp Ag2SO4 = 3,2 x 10^-5. Pernyataan yang benar mengenai campuran tersebut adalah …. A. terbentuk endapan karena Ksp < QC B. terbentuk endapan karena Ksp > QC C. belum terbentuk endapan karena Ksp < QC D.

belum terbentuk endapan karena Ksp > QC E. larutan tepat jenuh karena Ksp = QC Jika K sp < Q c maka terbentuk endapan, Ksp = Q c maka larutan jenuh, dan jika Ksp > Q c maka masih bias larut.

Karena Ksp > Qcbelum terbentuk endapan kunci jawaban : D 28. Diberikan 4 zat berikut: (1) Garam (2) Oksigen (3) Air (4) susu Zat yang apabila dicampur akan menghasilkan koloid emulsi adalah …. A. (1) dan (2) B. (1) dan (3) C. (2) dan (3) D. (2) dan (4) E. (3) dan (4) Emulsi adalah sistem koloid yang terbentuk dari fase terdispersi cair dan fase pendispersi cair, maka akan terbentuk dari (3) air dicampur dengan (4) susu.

kunci jawaban : E 29. Diketahui contoh koloid atom karbon memiliki elektron valensi sebanyak kehidupan sehari-hari sebagai berikut: (1) mayones (2) agar-agar (3) asap (4) buih sabun (5) kabut Pasangan koloid yang memiliki fasa terdispersi sama adalah ….

A. (1) dan (3) B. (1) dan (5) C. (2) dan (4) D. (2) dan (5) E. (3) dan (5) Pasangan koloid yang memiliki fase terdispersi sama adalah mayonaise (1) dan kabut (5) kunci jawaban : B 30.

Diberikan tabel tentang sifat koloid berikut Pasangan data yang tepat adalah …. A. (1) dan (3) B. (1) dan (4) C. (2) dan (4) D. (2) dan (5) E. (3) dan (5) Hubungan antara peristiwa sehari – hari dan sifat koloid yang benar Maka pasangan antara peristiwa sehari – hari dan sifat koloid yang benar adalah (3) dan (5) Kunci jawaban : E 31.

Perhatikan gambar ilustrasi komposisi larutan berikut ini! Pernyataan yang tepat untuk kedua larutan tersebut adalah …. A. tekanan osmotik larutan A lebih tinggi daripada larutan B B. titik didih larutan A lebih tinggi daripada larutan B C. titik beku larutan A lebih tinggi daripada larutan B D. tekanan uap larutan A lebih rendah daripada larutan B E.

larutan A isotonik dengan larutan B Sifat koligatif larutan ditentukan oleh banyaknya partikel terlarut dalam larutan Semakin banyak jumlah partikel terlarut dalam larutan maka titik didih semakin tinggi, titik beku semakin rendah, tekanan uap semakin rendah, tekanan osmosis semakin tinggi.

Titik didih larutan B > titik didih larutan A Titik beku larutan B < titik atom karbon memiliki elektron valensi sebanyak larutan A Tekanan uap jenuh larutan B < tekanan uap jenuh larutan A Tekanan osmosis larutan B > tekanan osmosis larutan A Pernyataan yang atom karbon memiliki elektron valensi sebanyak adalah titik beku larutan A > titik beku larutan B kunci jawaban : C 32.

Perhatikan tabel data larutan berikut! Derajat ionisasi larutan elektrolit terner tersebut adalah …. A. 0,40 B. 0,50 C. 0,80 D. 0,90 E. 1,00 Dapat dikerjakan namun Kb air seharusnya 0,52 0C m -1 Larutan non elektrolit ∆Tb = Kb.m 1,8 = Kb.

1 Kb = 1,8 Larutan elektrolit ∆Tb = Kb.m.i 4,68 = 1,8 x 1 x i i = 2,6 i = { 1 + (n – 1) α} 2,6 = { 1 + (3-1) α} 1,6 = 2α α = 0,8 kunci jawaban : C 33. Perhatikan potensial elektroda standar berikut! Cr3+(aq) + 3e → Cr(s) Eo = -0,71 volt Ag+(aq) + e → Ag(s) Eo = +0,80 volt Al3+(aq) + 3e → Al(s) Eo = -1,66 volt Zn2+(aq) + 2e → Zn(s) Eo = -0,74 volt Diagram sel yang dapat berlangsung spontan adalah …. A. Ag/Ag+//Cr3+/Cr B. Ag/Ag+//Zn2+/Zn C. Cr/Cr3+//Al3+/Al D. Zn/Zn2+//Al3+/Al E.

Zn/Zn2+//Ag+/Ag Reaksi akan berlangsung spontan apabila yang mengalami reduksi adalah zat yang memiliki potensial elektroda standar lebih besar dari pada zat yang mengalami oksidasi. Diagram sel yang mengahasilkan reaksi spontan adalah Zn/Zn 2+//Ag +/Ag Kunci jawaban : E 34.

Perhatikan reaksi elektrolisis berikut ini! (1) Elektrolisis larutan NaCl dengan elektroda C (2) Elektrolisis larutan K2SO4 dengan elektroda C (3) Elektrolisis leburan CaCl2 dengan elektroda Pt (4) Elektrolisis leburan CuCl2 dengan elektroda C Reaksi yang sama terjadi di katoda terdapat pada reaksi nomor …. A. (1) dan (2) B. (1) dan (3) C. (1) dan (4) D.

(2) dan (3) E. (3) dan (4) Pada elektrolisis larutan garam, dikatode terjadi reaksi reduksi. Reaksi di katode bergantung jenis kation dalam larutan. • Kation dapat berasal dari golongan alkali, alkali tanah, Al atau Mn yaitu ion-ion logam yang memiliki electrode lebih dari kecil atau lebih negative dari pada pelarut (air), sehingga air yang tereduksi. Reaksi yang terjadi dapat dituliskan seperti 2 H 2O(l) + 2 e¯ → 2 OH¯(aq) + H 2(g) • Ion-ion logam yang memiliki E° lebih besar dari -0,83 direduksi menjadi logam yang diendapkan pada permukaan M + + e¯ → M • Ion H +dari asam direduksi menjadi gas hidrogen (H 2) 2 H+(aq) + 2 e¯ → H 2(g) • Apabila di dalam elektrolisis yang dipakai adalah leburan, maka akan terjadi reaksi seperti M 2+ + 2e¯ → M Larutan NaCl dan K 2SO 4 akan menghasilkan reaksi yang sama di katoda karena fasanya larutan garam dari logam golongan I Kunci jawaban : A 35.

Berikut ini tabel berisi mineral dan unsurnya Pasangan data yang tepat antara mineral dan unsurnya adalah nomor …. A. (1) dan (2) B. (1) dan (3) C. (2) dan (4) D. (3) dan (4) E. (4) dan (5) Data yang benar: Pasangan data yang tepat adalah (1) dan (3) kunci jawaban : B 36.

Berikut ini adalah persamaan reaksi pembuatan logam natrium. Reaksi : 2NaCl(l) → 2Na+ + 2Cl- Katoda : 2Na+ + 2e → 2Na Anoda : 2Cl- → Cl2 + 2e Nama proses dan kegunaan yang paling tepat dari unsur yang dihasilkan adalah …. A. Downs, lampu penerangan di jalan raya B. Wohler, korek api C. Tanur tinggi, pendingin kulkas D. Frasch, bahan baku pembuatan pupuk E. Tall Herault, bahan baku asam sulfat Proses pembuatan logam Na yang menggunakan prinsip elektrolisis leburan garam natrium disebut proses Downs.

Kegunaan logam natrium salah satunya adalah lampu penerangan di jalan raya Kunci Jawaban : A 37. Nama IUPAC dan rumus struktur dari senyawa dengan rumus molekul Atom karbon memiliki elektron valensi sebanyak yang benar adalah …. Senyawa dengan rumus molekul C 4H 8O (CnH 2nO) mempunyai isomer fungsi alkanal dan alkanon, maka rumus struktur dan nama IUPAC yang benar adalah kunci jawaban :B 38. Senyawa organik memiliki struktur sebagai berikut.

Nama yang paling tepat untuk kedua struktur tersebut berturut-turut adalah …. A. o-metilnitrobenzena dan trinitrometana B. p-metilnitrobenzena dan 2,4,6 trinitrotoluena C. o-nitrotoluena dan 2,4,6 trinitrotoluena D. para metilnitrobenzena dan metil trinitrotoluene E.

m-nitrotoluena dan trinitro metana Gambar 1, gugus -CH 3 lebih reaktif dibandingkan gugus –NO 2 maka gugus fungsi senyawa tersebut adalah toluena, posisi substituen ada pada posisi 1,2 maka nama senyawa tersebut adalah o-nitro toluena Gambar 2, substituen –NO 2 berada pada posisi 2,4,6 maka nama senyawa tersebut adalah 2,4,6- trinitrotoluena Kunci Jawaban : C 39.

Hasil reaksi identifikasi senyawa dengan rumus molekul C2H4O sebagai berikut: (1) Dengan larutan KMnO4 bereaksi menghasilkan asam (2) Dengan pereaksi Tollens menghasilkan endapan perak Gugus fungsi senyawa karbon tersebut adalah ….

Senyawa dengan rumus molekul C 2H 4O hanya memiliki satu senyawa yaitu etanal (aldehid) dengan gugus fungsi -CHO, pengamatan hasil identifikasi tidak berpengaruh. kunci jawaban : A 40. Perhatikan monomer-monomer berikut! Jika kedua monomer tersebut bereaksi, polimer yang dihasilkan adalah ….

atom karbon memiliki elektron valensi sebanyak

A. PVC B. teflon C. nilon D. plastik E. protein Kunci Jawaban: C Mohon maaf jika terjadi kesalahan materi ataupun ketikan, kritik dan saran sangat saya butuhkan untuk bahan koreksi supaya bisa lebih baik… Aku Memilih Bahagia Cari Tulisan Terakhir • 23 Siswa-siswi MA Matholi’ul Huda Bugel Diterima di PTN Tanpa Test • Siswa MA Matholi’ul Huda Bugel Lolos OSK Tahun 2018 • Hasil OSK Provinsi Jawa Tengah Tahun 2018 • Nobar Gerhana Bulan Total dengan Tim Falak MA Matholi’ul Huda Bugel • Tim Hisab Rukyat MA Matholi’ul Huda Bugel Melaksanakan Rukyatul Hilal Awal Bulan Jumadal Awal 1439 H Komentar Terbaru yusronkamal pada Siswi MA Matholi’ul Huda… pakbamsblog pada Soal dan Pembahasan UN Fisika… Anonim pada Soal dan Pembahasan UN Fisika… dintagema pada Soal dan Pembahasan UN Kimia S… Shantae pada Soal dan Pembahasan UN Kimia S… Arsip • Mei 2018 • Maret 2018 • Januari 2018 • Desember 2017 • November 2017 • Oktober 2017 • September 2016 • Agustus 2016 • Juni 2016 • Mei 2016 Kategori • Tanpa kategori MENU • Home • SMP • Agama • Bahasa Indonesia • Kewarganegaraan • Pancasila • IPS • IPA • SMA • Agama • Bahasa Indonesia • Kewarganegaraan • Pancasila • Akuntansi • IPA • Biologi • Fisika • Kimia • IPS • Ekonomi • Sejarah • Geografi • Sosiologi • SMK • S1 • PSIT • PPB atom karbon memiliki elektron valensi sebanyak PTI • E-Bisnis • UKPL • Basis Data • Manajemen • Riset Operasi • Sistem Operasi • Kewarganegaraan • Pancasila • Akuntansi • Agama • Bahasa Indonesia • Matematika • S2 • Umum • (About Me) 9.1.

Sebarkan ini: • Latar Belakang Sistem periodik kimia adalah tampilan unsur-unsur kimia yang tertera dalam tabel. Jumlah unsur yang terdapat pada tabel sistem periodik adalah sebanyak 118 unsur. Jumlah unsur yang terdapat di alam lebih dari 118 unsur. Hal ini disebabkan karena atom-atom dapat bereaksi antara satu atom dengan atom yang lain membentuk substansi baru yang disebut dengan senyawa. Bila dua atau lebih atom-atom berikatan dan membentuk ikatan kimia menghasilkan senyawa yang unik yaitu memiliki sifat kimia dan sifat fisika yang berbeda dari sifat asalnya (sifat dari unsur-unsur sebelum bereaksi).

Ada beberapa hal yang kita dapat perhatikan, yaitu terdapat banyak contoh penerapan unsur-unsur kimia dalam kehidupan sehari-hari. Salah satunya contohnya adalah air. Air merupakan materi yang penting bagi kehidupan. Sebagian besar kebutuhan pokok kita menggunakan air. Bahkan dalam tubuh, air penting untuk menjaga DNA dari kerusakan, mengantarkan nutrisi ke seluruh bagian tunuh, dan menjaga keseimbangan suhu tubuh.

Kita mengetahui air memiliki rumus senyawa H 2O. Air tersusun dari unsur-unsur hidrogen dan oksigen.

atom karbon memiliki elektron valensi sebanyak

Tanpa kita sadari bahwa kita sedang berhadapan dengan contoh aplikasi dari unsur-unsur yang berikatan, yang kemudian membentuk senyawa. Mungkin hal-hal yang sepatutnya kita kritisi adalah bagaimana unsur-unsur tersebut dapat berikatan dan kemudian membentuk senyawa. Sebelum itu, kita harus mengetahui terlebih dahulu apa pengertian dari senyawa kimia. Dan istilah organk seolah-olah berhubungan dengan kata organisme atau jasad atom karbon memiliki elektron valensi sebanyak.

Organik merupakan zat yang berasal dari makluk hidup (hewan/tumbuhan-tumbuhan) seperti minyak dan batu bara. Pada dasarnya kimia organik melibatkan zat-zat yang diperoleh dari jasad hidup. Pada akhir abad ke-17 dan awal abad ke-18, para ahli kimia melakukan ekstraksi, pemurnian dan analisis zat-zat dari hewan dan tumbuhan. Motivasi dari para ahli ialah karena keingintahuan tentang jazat hidup dan disamping itu juga untuk memeroleh bahan-bahan untuk obat-obatan, pewarna dan maksud-maksud lain dengan melakukan ekstraksi dan pemurnian-pemurnian lain.

Lama-kelamaan menjadi jelas bahwa kebanyakan senyawa yang ada pada hewan dan tumbuhan terdapat banyak segi yang berbeda dengan benda mati, seperti mineral. Pada umumnya, senyawa dalam jasad hidup terdiri dari beberapa unsur yaitu: karbon, hidrogen, oksigen nitrogen dan disamping itu belerang dan fosfor. Kenyataan ini membawa kita pada defenisi. Jadi kimia organik ialah cabang ilmu kimia yang khusus mempelajari senyawa karbon.

Tujuan Dan Manfaat Bertolak dari latar belakang yang dikemukakan di atas, maka perlu penulis mengangkat “Ikatan Kimia Dan Senyawa Organik” sebagai pokok bahasan yang selanjutnya akan diuraikan dalam makalah yang sederhana ini dengan tujuan: • Untuk mengetahui dan memahami pengertian dari ikatan kimia.

• Untuk mengetahui seluruh jenis-jenis ikatan kimia. • Untuk mengetahui dan memahami proses terbentuknya ikatan kimia. • Untuk mengetahui apa itu kimia organik dan bagaimana peranannya dalam kehidupan sehari-hari. • Melatih dan mendorong mahasiswa agar lebih kreativitas dalam mengolah dan menuangkan ide yang dimiliki. Pengertian Ikatan Kimia Menurut Para Ahli • dikemukakan pada tahun 1916 oleh Gilbert Newton Lewis (1875-1946) dari Amerika atom karbon memiliki elektron valensi sebanyak Albrecht Kossel (1853-1927) dari Jerman (Martin S.

Silberberg, 2000) Ikatan Kimia Adalah gaya yang mengikat atom-atom dalam molekul atau gabungan ion dalam setiap senyawa. • Ikatan kimia adalah gaya tarik-menarik antara atom-atom sehingga atom-atom tersebut tetap berada bersama-sama dan terkombinasi dalam senyawaan.

Gagasan tentang pembentukan ikatan kimia dikemukakan oleh Lewis dan Langmuir (Amerika) serta Kossel (Jerman). Dalam pembentukan ikatan kimia, golongan gas mulia (VIII A) sangat sulit membentuk ikatan kimia.

• Diduga bila gas mulia bersenyawa dengan unsur lain, tentunya ada suatu atom karbon memiliki elektron valensi sebanyak dalam konfigurasi elektronnya yang mencegah persenyawaan dengan unsur lain.

(Elida, 1996). Menurut Elida (1996) mengatatakan bahwa, berdasarkan gagasan tersebut, kemudian dikembangkan suatu teori yang disebut Teori Lewis : • Pembentukan ikatan kimia mungkin terjadi dengan 2 cara : • Karena adanya satu atau lebih elektron dari satu atom ke atom yang lain sedemikian rupa sehingga terdapat ion positif dan ion negatif yang keduanya saling tarik-menarik karena muatannya berlawanan, membentuk ikatan ion.

• Karena adanya pemakaian bersama pasangan elektron di antara atom-atom yang berikatan. Jenis ikatan yang terbentuk disebut ikatan kovalen. • Perpindahan elektron atau pemakaian bersama pasangan elektron berlangsung sedemikian rupa sehingga setiap atom yang diberikan mempunyai suatu konfigurasi elektron mantap, yaitu konfigurasi dengan 8 elektron valensi. Melalui ikatan kimia unsur-unsur kemudian membentuk molekul ataupun benda-benda yang selanjutnya menyusun dan menjadi bagian dari alam semesta.

Ikatan kimia dapat terjadi karena adanya interaksi elektronik, atom karbon memiliki elektron valensi sebanyak berbagai wujud dan mekanisme. Sebuhungan dengan itu maka dikenal beberapa jenis ikatan kimia antara lain (Hanapi, dkk., 2013) : Antara dua atom atau lebih dapat saling berinteraksi dan membentuk molekul.

Interaksi ini selalu disertai dengan pelepasan energi, sedangkan gaya yang menahan atom-atom dalam molekul merupakan suatu ikatan yang dinamakan ikatan kimia. Ikatan kimia terbentuk karena unsur-unsur ingin memiliki struktur elektron stabil. Struktur elektron stabil yang dimaksud yaitu struktur elektron gas mulia.

Tabel struktur elektron gas mulia Periode Unsur Nomor Atom K L M N O P 1 He 2 2 2 Ne 10 2 8 3 Ar 18 2 8 8 4 Kr 36 2 8 18 8 5 Xe 54 2 8 18 18 8 6 Rn 86 2 8 18 32 18 8 Tahun 1916 G.N. Lewis dan W. Kossel menjelaskan hubungan kestabilan gas mulia dengan konfigurasi elektron. Kecuali He; mempunyai 2 elektron valensi; unsur-unsur gas mulia mempunyai 8 elektron valensi sehingga gas mulia bersifat stabil. Atom atom unsur cenderung mengikuti gas mulia untuk mencapai kestabilan.

Jika atom berusaha memiliki 8 elektron valensi, atom disebut mengikuti aturan oktet. Unsur-unsur dengan nomor atom kecil (seperti H dan Li) berusaha mempunyai electron valensi 2 seperti He disebut mengikuti aturan duplet.

Cara yang diambil unsur supaya dapat mengikuti gas mulia, yaitu: • melepas atau menerima elektron; • pemakaian bersama pasangan elektron. Jadi kecenderungan atom-atom untuk memiliki struktur atau konfigurasi elektron seperti gas mulia atau 8 elektron pada kulit terluar disebut ”kaidah oktet”. Sementara itu atom-atom yang mempunyai kecenderungan untuk memiliki konfigurasi electron seperti gas helium disebut ”kaidah duplet”.

Sehingga dapat disimpulkan bahwa gaya yang mengikat atom-atom dalam molekul atau gabungan ion dalam setiap senyawa disebut ikatan kimia. Konsep ini pertama kali dikemukakan pada tahun 1916 oleh Gilbert Newton Lewis (1875-1946) dari Amerika dan Albrecht Kossel (1853-1927) dari Jerman (Martin S. Silberberg, 2000). Konsep tersebut adalah: • Kenyataan bahwa gas-gas mulia (He, Ne, Ar, Kr, Xe, dan Rn) sukar membentuk senyawa merupakan bukti bahwa gas-gas mulia memiliki susunan elektron yang • Setiap atom mempunyai kecenderungan untuk memiliki susunan elektron yang stabil seperti gas mulia.

Caranya dengan melepaskan elektron atau menangkap • Untuk memperoleh susunan elektron yang stabil hanya dapat dicapai dengan cara berikatan dengan atom lain, yaitu dengan cara melepaskan elektron, 3menangkap atom karbon memiliki elektron valensi sebanyak, maupun pemakaian elektron secara bersama-sama.

Contoh gambar ikatan-ikatan kimia Contoh model titik Lewis yang menggambarkan ikatan kimia anatara karbon C, hidrogen H, dan oksigen O. Penggambaran titik lewis adalah salah satu dari usaha awal kimiawan dalam menjelaskan ikatan kimia dan masih digunakan secara luas sampai sekarang.

Jenis Ikatan KIMIA 1. Ikatan Primer Ikatan primer adalah ikatan kimia dimana ikatan gata antar atomnya relatif besar. Ikatan primer ini terdiri atas ikatan ion, ikatan kovalen, dan ikatan logam. Pengertian Ikatan Ionik Menurut Ahli (James E. Brady, 1990) Ikatan ion adalah ikatan yang terjadi akibat perpindahan elektron dari satu atom ke atom lain (James E.

Brady, 1990). Ikatan ion terbentuk antara atom yang melepaskan electron (logam) dengan atom yang menangkap elektron (bukan logam). Atom logam, setelah melepaskan elektron berubah menjadi ion positif. Sedangkan atom bukan logam, setelah menerima elektron berubah menjadi ion negatif. Antara ion-ion yang berlawanan muatan ini terjadi tarik-menarik (gaya elektrostastis) yang disebut ikatan ion (ikatan elektrovalen). Senyawa yang memiliki ikatan ion disebut senyawa ionik.

Senyawa ionik biasanya terbentuk antara atom-atom unsur logam dan nonlogam. Proses terbentuknya ikatan ionik dicontohkan dengan pembentukan NaCl. Natirum (Na) dengan konfigurasi elektron (2,8,1) akan lebih stabil jika melepaskan 1 elektron sehingga konfugurasi elektron berubah menjadi (2,8). Sedangkan Klorin (Cl), yang mempunyai konfigurasi (2,8,7), akan lebih stabil jika mendapatkan 1 elektron sehingga konfigurasinya menjadi (2,8,8).

Jadi agar keduanya menjadi lebih stabil, maka natrium menyumbang satu elektron dan klorin akan kedapatan satu elektron dari natrium. Ketika natrium kehilangan satu elektron, maka natrium menjadi lebih kecil. Sedangkan klorin akan menjadi lebih besar karena ketambahan satu elektron. Oleh karena itu ukuran ion positif selalu lebih kecil daripada ukuran sebelumnya, namun ion negatif akan cenderung lebih besar daripada ukuran sebelumnya.

Ketika pertukaran elektron terjadi, maka Na akan menjadi bermuatan positif (Na +) dan Cl akan menjadi bermuatan negatif (Cl –). Kemudian terjadi gaya elektrostatik antara Na + dan Cl – sehingga membentuk ikatan ionik. Ikatan ion terbentuk antara: atom karbon memiliki elektron valensi sebanyak ion positif dengan ion negatif, • atom-atom berenergi potensial ionisasi kecil dengan atom-atom berafinitas elektron besar (Atom-atom unsur golongan IA, IIA dengan atom-atom unsur golongan VIA, VIIA), • atom-atom dengan keelektronegatifan kecil dengan atom-atom yang mempunyai keelectronegatifan besar Sifat-sifat senyawa ion sebagai berikut.

• Dalam bentuk padatan tidak menghantar listrik karena partikel-partikel ionnya terikat kuat pada kisi, sehingga tidak ada elektron yang bebas bergerak. • Leburan dan larutannya menghantarkan listrik.

• Umumnya berupa zat padat kristal yang permukaannya keras dan sukar digores. • Titik leleh dan titik didihnya tinggi. • Larut dalam pelarut polar dan tidak larut dalam pelarut nonpolar. Ikatan ion terjadi karena adanya gaya tarik-menarik antar ion yang bermuatan positif dan ion yang bermuatan negative. Menurut Wibowo (2013) ada beberapa yang perlu diperhatikan, biasanya terjadi kesalahan konsep dalam materi ikatan kimia ini, seperti contoh sebagai berikut : • Ikatan ionik hanya dapat terjadi antara kation dan anion sederhana, • Senyawa ionik hanya dapat terbentuk secara langsung dari ion-ion, dll Pada formula atau rumus ionik.

Senyawa ion itu tidak ada sebagai molekul, sehinga kita tidak dapat mengetahui tentang rumus molekul dari senyawa ion. Sebagai gantinya, rumus ionik suatu senyawa ialah rumus empiris senyawa tersebut. Seperti contoh, natrium klorida rumusnya NaCl. Menurut Saunders (2007) ada beberapa jumlah yang sama dengan ion tersebut dalam kisi atom karbon memiliki elektron valensi sebanyak, seperti contoh : • Magnesium Oksida berisi Mg 2+ dan O 2- ion, dan rumusnya itu MgO • Kalsium Klorida berisi Ca 2+ dan cl 2- ion, dan rumusnya itu CaCl 2 • Alumunium Oksida berisi Al 3+ dan O 2- ion, dan rumusnya itu Al 2O 3 Contoh ikatan kimia dalam kehidupan sehari-hari : contohnya adalah air.

Air merupakan materi yang penting bagi kehidupan. Sebagian besar kebutuhan pokok kita menggunakan air. Bahkan dalam tubuh, air penting untuk menjaga DNA dari kerusakan, mengantarkan nutrisi ke seluruh bagian tunuh, dan menjaga keseimbangan suhu tubuh.

Kita mengetahui air memiliki rumus senyawa H 2O. Air tersusun dari unsur-unsur hidrogen dan oksigen. Tanpa kita sadari bahwa kita sedang berhadapan dengan contoh aplikasi dari unsur-unsur yang berikatan, yang kemudian membentuk senyawa.

Mungkin hal-hal yang sepatutnya kita kritisi adalah bagaimana unsur-unsur tersebut dapat berikatan dan kemudian membentuk senyawa.

Sebelum itu, kita harus mengetahui terlebih dahulu apa pengertian dari senyawa kimia. Dan istilah organk seolah-olah berhubungan dengan kata organisme atau jasad hidup. Organik merupakan zat yang berasal dari makluk hidup (hewan/tumbuhan-tumbuhan) seperti minyak dan batu bara.

Atom karbon memiliki elektron valensi sebanyak dasarnya kimia organik melibatkan zat-zat yang diperoleh dari jasad hidup. Ikatan Kovalen (James E. Brady, 1990) Ikatan kovalen adalah ikatan yang terjadi akibat pemakaian pasangan elektron secara bersama-sama oleh dua atom (James E.

Brady, 1990). Ikatan kovalen terbentuk di antara dua atom yang sama-sama ingin menangkap elektron (sesama atom bukan logam). Pasangan elektron yang dipakai bersama disebut pasangan electron ikatan (PEI) dan pasangan elektron valensi yang tidak terlibat dalam pembentukan ikatan kovalen disebut pasangan elektron bebas (PEB).

Ikatan kovalen umumnya terjadi antara atom-atom unsur nonlogam, bisa sejenis (contoh: H2, N2, O2, Cl2, F2, Br2, I2) dan berbeda jenis (contoh: H2O, CO2, dan lain-lain).

Senyawa yang hanya mengandung ikatan kovalen disebut senyawa kovalen. Contoh Gambar Ikatan Kovalen Rumus Kimia Senyawa Kovalen Dengan mengacu pada aturan oktet, kita dapat memprediksikan rumus molekul dari senyawa yang berikatan kovalen. Dalam hal ini, jumlah elektron yang dipasangkan harus disamakan.

Akan tetapi, perlu diingat bahwa aturan oktet tidak selalui dipatuhi, terdapat beberapa senyawa kovalen yang melanggar aturan oktet. Contohnya adalah ikatan antara H dan O dalam H 2O. Konfigurasi elektron H dan O adalah H memerlukan 1 elektron dan O memerlukan 2 elektron.

Agar atom O dan H mengikuti kaidah oktet, jumlah atom H yang diberikan harus menjadi dua, sedangkan atom O satu, sehingga rumus molekul senyawa adalah H 2O. pasangan elektron yang berikatan Ikatan kovalen terdiri dari : • Ikatan Kovalen Nonpolar Ikatan kovalen nonpolar yaitu ikatan kovalen yang PEInya tertarik sama kuat ke arah atom-atom yang berikatan.

Senyawa kovalen nonpolar terbentuk antara atom-atom unsur yang mempunyai beda keelektronegatifan nol atau mempunyai momen dipol = 0 (nol) atau mempunyai bentuk molekul simetri. Titik muatan negative electron persekutuan berhimpit, sehingga pada molekul pembentuknya tidak terjadi momen dipol, dengan perkataan lain bahwa elektron persekutuan mendapat gaya tarik yang sama. Ikatan kovalen nonpolar terdiri dari: • Ikatan kovalen tunggal Ikatan kovalen tunggal yaitu ikatan kovalen yang memiliki 1 pasang PEI.

Contoh: H2, H2O (konfigurasi elektron H = 1; O = 2, 6). Contoh pembentukan ikatan pada molekul H 2O di bawah ini: Ikatan kovalen tunggal • Ikatan kovalen rangkap dua Ikatan kovalen rangkap 2 yaitu ikatan kovalen yang memiliki 2 pasang PEI.

Contoh: O2, CO2 (konfigurasi elektron O = 2, 6; C = 2, 4). Berikut ini pembentukan ikatan angkap 2 pada molekul CO 2. Ikatan kovalen rangkap dua • Ikatan kovalen rangkap tiga Ikatan kovalen rangkap 3 yaitu ikatan kovalen yang memiliki 3 pasang PEI. Contoh: N2 (Konfigurasi elektron N = 2, 5). Berikut ini pembentukan ikatan rangkap 3 pada molekul N 2 Ikatan kovalen rangkap tiga • Ikatan Kovalen Polar Ikatan kovalen polar adalah ikatan kovalen yang PEInya cenderung tertarik ke salah satu atom yang berikatan.

Kepolaran suatu ikatan kovalen ditentukan oleh keelektronegatifan suatu unsur. Senyawa kovalen polar biasanya terjadi antara atom-atom unsur yang beda keelektronegatifannya besar, mempunyai bentuk molekul asimetris, mempunyai momen dipol. Ikatan kovalen yang terjadi antara dua atom yang berbeda disebut ikatan kovalen polar. Ikatan kovalen polar dapat juga terjadi antara dua atom yang sama tetapi memiliki keelektronegatifan yang berbeda. Contoh ikatan kovalen polar: HF Contoh ikatan kovalen polar HF Dlm senyawa HF ini, F mempunyai keelektronegatifan yang tinggi jika dibandingkan H.

sehingga pasangan elektron lebih tertarik kearah F, akibatnya akan terbentuk dipol-dipol atau terjadi pengkutuban (terbentuknya kutub antara H dan F). • Ikatan Kovalen Koordinasi Ikatan kovalen koordinasi adalah ikatan kovalen di mana pasangan electron yang dipakai bersama hanya disumbangkan oleh satu atom, sedangkan atom yang satu lagi tidak menyumbangkan elektron.Jadi disini terdapat satu atom pemberi pasangan electron bebas, sedangkan atom lain sebagai penerimanya.

Ikatan kovalen koordinasi kadang-kadang dinyatakan dengan tanda panah (→) yg menunjukan arah donasi pasangan elektron. Contoh Ikatan Kovalen Koordinasi: BF3NH3 5B = 1s2 2s2 2p1 9F = 1s2 2s2 2p5 7N = 1s2 2s2 2p3 Contoh Ikatan Kovalen Koordinasi BF3NH3 Sifat-sifat Senyawa Kovalen : • Titik didih Pada umumnya senyawa kovalen mempunyai titik didih yang rendah (rata-rata di bawah suhu 200 0C).

Sebagai contoh Air, H2O merupakan senyawa kovalen. Ikatan kovalen yang mengikat antara atom hidrogen dan atom oksigen dalam molekul air cukup kuat, sedangkan gaya yang mengikat antar molekul-molekul air cukup lemah. Keadaan inilah yang menyebabkan air dalam fasa (bentuk) cair akan mudah berubah menjadi uap air bila dipanaskan sampai sekitar 100 0C, akan tetapi pada suhu ini ikatan kovalen yang ada di dalam molekul H2O tidak putus.

• Volatitilitas (kemampuan untuk menguap) Sebagian besar senyawa kovalen berupa cairan yang mudah menguap dan berupa gas. Molekul-molekul pada senyawa kovalen yang mempunyai sifat mudah menguap sering menghasilkan bau yang khas.

Parfum dan bahan pemberi aroma merupakan senyawa kovalen contoh dari senyawa kovalen yang mudah menguap • Kelarutan Pada Umumnya senyawa kovalen tidak dapat larut dalam air, tetapi mudah larut dalam pelarut organik. Pelarut organik merupakan senyawa karbon, misalnya bensin, minyak tanah, alkohol, dan aseton. Namun ada beberapa senyawa kovalen yang dapat larut dalam air karena terjadi reaksi dengan air (hidrasi) dan membentuk ion-ion.

Misalnya, asam sulfat bila dilarutkan ke dalam air akan membentuk ion hidrogen dan ion sulfat. Senyawa kovalen yang dapat larut dalam air selanjutnya disebut dengan senyawa kovalen polar, sedangkan senyawa kovalen yang tidak larut dalam air selanjutnya disebut dengan senyawa kovalen non polar.

• Daya hantar Listrik Pada umumnya senyawa kovalen pada berbagai wujud tidak dapat menghantar arus listrik atau bersifat non elektrolit, kecuali senyawa kovalen polar. Hal ini disebabkan senyawa kovalen polar mengandung ion-ion jika dilarutkan dalam air dan senyawa tersebut temasuk senyawa elektrolit lemah. Berikut ini gambar perbedaan antara senyawa non elektrolit, elektrolit lemah dan elektrolit kuat. Ikatan Logam Ikatan logam adalah ikatan kimia yang terbentuk akibat penggunaan bersama electron elektron valensi antaratomatom logam.

Contoh: logam besi, seng, dan perak. Ikatan logam bukanlah ikatan ion atau ikatan kovalen. Salah satu teori yang dikemukakan untuk menjelaskan ikatan logam adalah teori lautan elektron.

Contoh terjadinya ikatan logam. Tempat kedudukan elektron valensi dari suatu atom besi (Fe) dapat saling tumpang tindih dengan tempat kedudukan elektron valensi dari atom-atom Fe yang lain. Tumpang tindih antarelektron valensi ini memungkinkan elektron valensi dari setiap atom Fe atom karbon memiliki elektron valensi sebanyak bebas dalam ruang di antara ion-ion Fe+ membentuk lautan elektron.

Karena muatannya berlawanan (Fe2+ dan 2 e–), maka terjadi gaya tarik-menarik antara ion-ion Fe+ dan elektron-elektron bebas ini. Akibatnya terbentuk ikatan yang disebut ikatan logam. Adanya ikatan logam menyebabkan logam bersifat: • pada suhu kamar berwujud padat, kecuali Hg; • keras tapi lentur/dapat ditempa; • mempunyai titik didih dan titik leleh yang tinggi; • penghantar listrik dan panas yang baik; • mengilap.

Contoh ikatan logam : Perbandingan Sifat Fisis Senyawa Logam dengan Senyawa Non Logam Logam Non Logam 1. Padatan logam termasuk penghantar listrik yang baik 1. Padatan non logam biasanya bukan penghantar listrik 2. Mempunyai kilap logam 2. Tidak mengkilap 3. Kuat dan keras (apabila digunakan sebagai logam paduan) 3. Kebanyakan non logam tidak kuat dan lunak 4.

atom karbon memiliki elektron valensi sebanyak

Dapat dibengkokkan dan diulur 4. Biasanya rapuh dan patah bila dibengkokkan atau diulur 5. Penghantar panas yang baik 5. Sukar menghantarkan panas 6. Kebanyakan logam memiliki kerapatan yang besar 6. Kebanyakan non logam memiliki kerapatan rendah 7. Kebanyakan logam memiliki titik didih dan titik leleh yang tinggi 7.

Kebanyakan non logam memiliki titik didih dan titik leleh yang rendah REAKSI SENYAWA LOGAM : Logam-logam alkali mempunyai beberapa sifat fisik antara lain semuanya lunak, putih mengkilat, dan mudah dipotong. Jika logam-logam tersebut dibiarkan di udara terbuka maka permukaannya akan menjadi kusam karena logam-logam tersebut mudah bereaksi dengan air atau oksigen, dan biasanya disimpan dalam minyak tanah.

Bersamaan dengan semakin bertambahnya nomor atom maka tingkat kelunakannya juga semakin bertambah. Tingkat kelunakan logam-logam alkali makin bertambah sesuai dengan bertambahnya nomor atom logam-logam tersebut. Sifat-sifat kimia logam alkali tanah dapat diamati antara lain dari reaksinya terhadap air. Reaksinya atom karbon memiliki elektron valensi sebanyak air menghasilkan gas hidrogen dan hidroksida serta cukup panas.

Reaktivitas terhadap air dingin semakin bertambah besar dengan bertambahnya nomor logam. Logam-logam alkali tanah, kecuali berilium semuanya berwarna putih, mudah dipotong dan nampak semakin mengkilat jika dipotong, serta cepat menjadi kusam di udara.

Reaktivitasnya terhadap air berbeda-beda. Berilium dapat bereaksi dengan air dalam keadaan pijar dan airnya dalam bentuk uap. Magnesium bereaksi dengan air dingin secara lambat dan semakin cepat bila makin panas, logam-logam alkali tanah yang lain sangat cepat bereaksi dengan air dingin menghasilkan gas hidrogen dan hidroksida serta menghasilkan banyak panas.

Senyawa klorida dari logam-logam alkali maupun alkali atom karbon memiliki elektron valensi sebanyak larut dalam air membentuk ion hidrat sederhana. banyak klorida kovalen atau agak kovalen mengalami hidrolisis dan menghasilkan klorida dan oksida atau hidroksinya.

Misalnya larutan aluminium klorida bereaksi dengan air membentuk aluminium hidroksida. • Polarisasi Ikatan Kovalen Perbedaan keelektronegatifan dua atom menimbulkankepolaran senyawa. Adanya perbedaan keelektronegatifan tersebut menyebabkan pasangan elektron ikatan lebih tertarik ke salah satu unsur sehingga membentuk dipol. Adanya dipol inilah yang menyebabkan senyawa menjadi polar.

Pada senyawa HCl, pasangan elektron milik bersama akan lebih dekat pada Cl karena daya tarik terhadap elektronnya lebih besar dibandingkan H. Hal itu menyebabkan terjadinya polarisasi pada ikatan H – Cl. Atom Cl lebih negatif daripada atom H, hal tersebut menyebabkan terjadinya ikatan kovalen polar.

Contoh: 1) Senyawa kovalen polar: HCl, HBr, HI, HF, H2O, NH3. 2) Senyawa kovalen nonpolar: H2, O2, Cl2, N2, CH4, C6H6, BF3. Pada ikatan kovalen yang terdiri lebih dari dua unsur, kepolaran senyawanya ditentukan oleh hal-hal berikut. 1) Jumlah momen dipol, jika jumlah momen dipol = 0, senyawanya bersifat nonpolar.

Jika momen dipol tidak sama dengan 0 maka senyawanya bersifat polar. 2) Bentuk molekul, jika bentuk molekulnya simetris maka senyawanya bersifat nonpolar, sedangkan jika bentuk molekulnya tidak simetris maka senyawanya bersifat polar.

• Aturan Oktet A turan oktet, yaitu unsur akan mendapatkan atau kehilangan elektron untuk mencapai keadaan penuh delapan elektron valensi (oktet). Contohnya yaitu Natrium memiliki satu elektron valensi. Menurut hukum oktet, unsur ini akan bersifat stabil ketika memiliki 8 elektron valensi. Dengan demikian, natrium akan kehilangan elektron 3s-nya. Dengan demikian, atom natrium akan berubah menjadi ion natrium dengan muatan positif satu (Na +).

Ion tersebut isoelektronik dengan neon (gas mulia) sehingga ion Na + bersifat stabil. Sementara, untuk memenuhi aturan oktet, unsur klorin membutuhkan satu elektron untuk melengkapi pengisian elektron pada 3p. Setelah menerima satu elektron tambahan, unsur ini berubah menjadi ion dengan muatan negatif satu (Cl –). Ion Cl –isoelektronik dengan argon (gas mulia) sehingga bersifat stabil. Jika natrium dicampurkan dengan klorin, jumlah elektron natrium yang hilang akan sama dengan jumlah elektron yang diperoleh klorin.

Satu elektron 3s pada natrium akan dipindahkan ke orbital 3p pada klorin. • Pengecualian dan Kegagalan Aturan Oktet Walaupun aturan oktet banyak membantu dalam meramalkan rumus kimia senyawa biner sederhana, akan tetapi aturan itu ternyata banyak dilanggar dan gagal dalam meramalkan rumus kimia senyawa dari unsur-unsur transisi dan postransisi. • Pengecualian aturan oktet Pengecualian aturan oktet dapat dibagi dalam tiga kelompok sebagai berikut. • Senyawa yang tidak mencapai aturan oktet.

Senyawa yang atom pusatnya mempunyai elektron valensi kurang dari 4 termasuk dalam kelompok ini. Hal ini menyebabkan setelah semua elektron valensinya dipasangkan tetap belum mencapai oktet. Contohnya adalah BeCl2, BCl3, dan AlBr3. • Senyawa dengan jumlah elektron valensi ganjil.

Contohnya adalah NO2, yang mempunyai elektron valensi (5 + 6 + 6) = 17. • Senyawa yang melampaui aturan oktet. Ini terjadi pada unsur-unsur periode 3 atau lebih yang dapat menampung lebih dari 8 elektron pada kulit terluarnya (ingat, kulit M dapat menampung hingga 18 elektron).

Beberapa contoh adalah PCl5, SF6, ClF3, IF7, dan SbCl5. • Kegagalan aturan oktet Aturan oktet gagal meramalkan rumus kimia senyawa dari unsur transisi maupun postransisi. Unsur postransisi adalah unsur logam setelah unsur transisi, misalnya Ga, Sn, dan Bi.

Sn mempunyai 4 elektron valensi, tetapi senyawanya lebih banyak dengan tingkat oksidasi +2. Begitu juga Bi yang mempunyai 5 elektron valensi, tetapi senyawanya lebih banyak dengan tingkat oksidasi +1dan +3. Pada umumnya, unsur transisi maupun unsur postransisi tidak memenuhi aturan oktet.

2. Ikatan Sekunder (Gaya Tarik Antarmolekul) Ikatan sekunder adalah ikatan antar molekul. Gaya ikatan sekunder timbul dari dipol atom atau molekul. Pada dasarnya dipol listrik timbul jika ada jarak pisah antara bagian positif dan negatif dari sebuah atom dan molekul. Perlu diingat bahwa atom karbon memiliki elektron valensi sebanyak tarik antarmolekul berikatan dengan sifat-sifat fisis zat, seperti titik leleh dan titik didih. Semakin kuat gaya tarik antarmolekul, semakin sulit untuk memutuskannya, sehingga mengakibatkan semakin tinggi titik leleh maupun titik didih suatu senyawa.

• Gaya London / Gaya Dispersi Gaya London atau gayadispersi adalah gaya tarik menarik antara molekul-molekul dalam zat yang nonpolar. Fritz London, seorang ilmuwan Jerman mengungkapkan teori tentang gaya ini, sehingga gaya ini bisa disebut gaya London. Gaya London adalah gaya dimana elektron senantiasa bergerak dalam orbital. Perpindahan elektron dari suatu daerah ke daerah lainnya menyebabkan suatu molekul yang secara normal bersifat nonpolar menjadi polar sesaat, membentuk dipol sesaat.

Dipol yang terbentuk dengan cara ini disebut dipol sesaat karena dipol ini dapat berubah secara banyak dalam satu detik. Dipol sesaat pada suatu molekul dapat mengimbas molekul di sekitarnya sehingga membentuk suatu dipol terimbas. Gaya London merupakan gaya yang relatif lemah. Zat yng molekulnya bertarikan hanya berdasarkan gaya London mempunyai titik leleh dan titik didih yang rendah dibandingkan dengan zat lain yang massa molekulnya relatif kira-kira sama.

Jika molekul-molekulnya kecil, zat-zat itu biasanya berbentuk gas pada suhu kamar. Contohnya adalah hidrogen (H 2), nitrogen (N 2), metana (CH 4), gas-gas mulia seperti helium (He), dan sebagainya.

Kekuatan gaya London bergantung pada beberapa faktor, antara lain kerumitan molekul dan ukuran molekul. Kerumitan Molekul • Lebih banyak terdapat interaksipada molekul kompleks dari molekul sederhana, sehingga Gaya London lebih besar dibandingkan molekul sederhana. • Makin besar Mr makin kuat Gaya London. Ukuran Molekul • Molekul yang lebih besar mempunyai tarikan lebih besar dari pada molekul berukuran kecil.

Sehingga mudah terjadi kutub listrik sesaat yang menimbulkan Gaya London besar. • Dalam satu golongan dari atas ke bawah, ukurannya bertambah besar, sehingga gaya londonnya juga semakin besar. • Ikatan Hidrogen Suatu gaya antarmolekul yang relatif kuat terdapat dalam senyawa hidrogen yang mempunyai keelektronegatifan besar, yaitu fluorin (F), oksigen (O), dan nitrogen (N). Misalnya dalam HF, H 20, dan NH 3.

Hal ini tercermin dari titik didih yang menyolok tinggi dari senyawa-senyawa tersebut dibandingkan dengan senyawa lain yang sejenis. Kekuatan ikatan hidrogen ini dipengaruhi oleh perbedaan elektronegativitas antara atom-atom dalam molekul tersebut. Semakin besar perbedaannya, semakin besar ikatan hidrogen yang terbentuk. Ikatan hidrogen memengaruhi titik didih suatu senyawa. Semakin besar ikatan hidrogennya, semakin tinggi titik didihnya. Namun, khusus pada air (H 2O), terjadi dua ikatan hidrogen pada tiap molekulnya.

Akibatnya jumlah total ikatan hidrogennya lebih besar daripada asam florida (HF) yang seharusnya memiliki ikatan hidrogen terbesar (karena paling tinggi perbedaan elektronegativitasnya) sehingga titik didih air lebih tinggi daripada asam florida. Gambar Ikatan Hidrogen Ikatan hidrogen yang terjadi antar molekul air, dimana muatan parsial positif berasal dari atom H yang berasal dari salah satu molekul air.

Ikatan hidrogen dapat terjadi inter molekul dan intra molekul. Jika ikatan terjadi antara atom-atom dalam molekul yang sama maka disebut ikatan hidrogen intramolekul atau didalam molekul, seperti molekul H 2O dengan molekul H 2O. Ikatan hidrogen, juga terbentuk pada pada antar molekul seperti molekul NH3, CH 3CH 2OH dengan molekul H 2O, ikatan yang semacam ini disebut dengan ikatan hidrogen intermolekul.

• Ikatan / Gaya Van Der Waals Gaya-gaya antarmolekul secara kolektif disebut juga gaya van der Waals. Jadi, bisa dikatakan bahwa gaya London, gaya dipol-dipol, dan gaya dipol-dipol terimbas, semuanya tergolong gaya van der Waals. Namun demikian, ada kebiasaan untuk melakukan pembedaan yang bertujuan untuk memperjelas gaya antarmolekul dalam suatu zat berikut.

• Istilah gaya London atau gaya dispersi digunakan, jika gaya antarmolekul itulah satu-satunya, yaitu untuk zat-zat yang nonpolar. Misalnya atom karbon memiliki elektron valensi sebanyak gas mulia, hidrogen, dan nitrogen.

• Istilah gaya van der Waals digunakan untuk zat yang mempunyai dipol-dipol selain gaya dipersi, misalnya hidrogen klorida dan aseton. Geometri Molekul Geometri molekul berkaitan dengan susunan ruang atom-atom dalam molekul. Molekul diatomik memiliki geometri linear; Molekul triatomik dapat bergeometri linear atau bengkok; Molekul tetraatomik bergeometri planar (datar sebidang) atau piramida.

Semakin banyak atom penyusun molekul, semakin banyak pula geometrinya. Geometri molekul dapat ditentukan melalui percobaan. Namun demikian, molekul-molekul sederhana dapat diramalkan geometrinya berdasarkan pemahaman tentang struktur elektron dalam molekul. Teori Domain Elektron Teori domain elektron adalah suatu cara meramaikan geometri molekul berdasarkan tolak-menolak elektron-elektron pada kulit luar atom pusat.

Domain elektron berarti kedudukan elektron atau daerah keberadaan elektron, dalam hal ini pada atom pusat. Jumlah domain elektron ditentukan sebagai berikut. • Satu pasangan elektron ikatan (PEI), baik ikatan tunggal, rangkap, atau rangkap tiga, merupakan satu domain.

• Satu pasangan elektron bebas (PEB) merupakan satu domain. No. Senyawa Rumus Lewis Atom Pusat Jumlah Domain Elektron PEI PEB 1. H 2O H O H 2 2 4 2. CO 2 O C O 2 0 2 3 SO 2 O S O 2 1 3 Tabel 1.4 Prinsip Dasar Teori Domain Elektron • Antara domain elektron pada kulit luar atom pusat saling tolak-menolak, sehingga domain elektron akan mengatur diri (mengambil formasi) sedemikian rupa sehingga tolak-menolak di antaranya menjadi minimum.

• Pasangan elektron bebas mempunyai gaya tolak yang sedikit lebih kuat daripada pasangan elektron ikatan. Hal itu terjadi karena pasangan elektron bebas hanya terikat pada satu atom sehingga gerakannya lebih leluasa. Pengertian Senyawa Organik Sebelum membahas lebih rinci dan jelas mengenai kimia organik, maka yang sangat perlu diketahui adalah pengertian kimia Senyawa organik.

Senyawa organik adalah senyawa yang banyak mengandung unsur karbon dan unsur lainnya seperti hidrogen, oksigen, nitrogen, belerang, dan fosfor dalam jumlah sedikit.

atom karbon memiliki elektron valensi sebanyak

Berikut ini beberapa contoh senyawa organik yang banyak terdapat dalam kehidupan sehari-sehari, yaitu : CH 4= Metana (gas alam/ biogas)C 2H 2= Etuna (gas karbit)C 2H 5OH= Etanol (alkohol)C 6H 12O 6= GlukosaCH 3COOH= Asam asetat (cuka)C atom karbon memiliki elektron valensi sebanyak 18= Oktana (bensin)C 2H 6= EtanaC 3H 8= PropanaC 3H 6O= Propana (aseton). Dari pengertian yang ada kimia organic memiliki ruang lingkup yag meluas, tidak hanya meliputi senyawa-senyawa dari alam melainkan jua termasuk senyawa sintesis yakni senyawa yang dibuat di laboratorium.

Senyawa-senyawa karbon, memiliki peranan penting dalam seluruh organism hidup dalam kehidupan sehari-hari.Kini telah dikenal lebih dari dua juta senyawa karbon atau senyawa organic dibandingkan dengan ± 100.000 senyawa organik. Sifat khas dari senyawa organik adalah memiliki kemampuan berikatan dengan atom-atom umum lainnya. Atom karbon dalam senyawa karbon dapat membentuk rantai panjang, cincin, dan susunan lain yang lebih rumit. Senyawa karbon dapat terbentuk dari molekul-molekul besar seperti polistirena.Berawal dari penjelasan pada pendahuluan terutama latar belakang telah digambarkan mengenai senyawa organik dan senyawa an-organik maka di sini dapat ditunjukkan perbedaan-perbedaannya.

Senyawa Organik Senyawa An-organik 1. Tidak tahan panas 2. Semuanya berkatan kovalen 3. Sebagian besar tidak dalam air 4. Reaksinya lambat 5. Memiliki rantai yang panjang 6. Mempunyai isomer 7.

Jika dibakar menghasilkan arang 1. Tidak panas ( terurai pada suhu tinggi ) 2. Dapat diberikan ion ( kovalen ) 3. Sebagian besar larut dalam air 4. Reaksinya relative cepat 5. Tidak memiliki rantai yang panjang 6. Tidak memiliki isomer 7. Jika dibakar tidak menghasilkan arang Senyawa-senyawa organik sintesis biasanya terdiri dari penggabungan kepingan kecil dan sederhana menjadi molekul besar yang kompleks.

atom karbon memiliki elektron valensi sebanyak

Ikatan kimia dipecahkan melalui reaksi-reaksi kimia. Ikatan dan Isomer Atom mengandung inti ( nucleus ) yang kecil dan padat dikelilingi oleh electron-elektron inti bermuatan positif, dan terdiri dari proton (+) dan neutron ( -).

Nomor atom suatu unsur: jumlah proton dalam inti / jumlah neutron bobot atom ≤ jumlah proton dan neutron. Orbital adalah electron-elektron terpusat pada daerah tertentu yang dikelilingi inti. Pada dasarnya bahwa sebelum mengetahui tentang ikatan asam unsur-unsur yang bergabung untuk membentuk ikatan kimia maka yang perlu diketahui adalah mengenai unsur-unsur kulit elektron. Susunan Elektron Dalam Kulit Atom Nomor kulit Jumlah Orbital Setiap Kulit Jumlah Elektron Jika Kulit Terisi Penuh S P D 1 2 3 1 1 1 0 3 3 0 0 5 2 8 18 Susunan elektron dari 18 unsur pertama adalah: Unsur- unsur : Hidrogen,Herlium, Litium, Berilium, Boron, Karbon, Nitrogen, Oksigen, Fluor, Neon, Natrium, Magnesium, Aluminium, Silikon, Fosfor, Belerang, Klor, dan Argon.

Elektron valensi dari 18 unsur pertama : Ikatan Ionik dan Kovalen Ikatan ionik terbentuk melalui pemindahan satu atau lebih electron valensi dari satu atom ke atom lain. Atom yang menyerahkan electron menjadi bermuatan positif yaitu kation,sedangkan atom yang menerima electron menjadi bermuatan negative adalah anion.Contoh : Reaksi antara atom natrium dan klor membentuk natrium klorida (garam dapur).

Dengan reaksinya : Na + .C: → Na + + :Cl: – Atom Atom Kation Anion Natrium Klor Natrium Klor Atom-atom seperti natrium yang cenderung menyerakan elektronnya dinamakan elektropositif, sedangkan atom-atom seperti klor yang cenderug menerima electron dinamakan elektronegatif.

Reaksinya: H + H → H: + Klor Atom Molekul Hidrogen Hidrogen • Karbon dan Ikatan Kovalen Atom karbon tidak mempunyai kecenderungan kuat untuk melepaskan semua elektronnya atau kecenderungan kuat untuk menerima 4 elektron.

Karbon tidak bersifat elektropositif kuat dan elektronegatif kuat melainkan membentuk ikata kovalen dengan atom lain melalui penggunaan electron bersama. Misalnya: Metana yakni karbon bergabung denga empat atom hidogen (masing-masing memperjuangkan satu empat electron valensi) • Ikatan tunggal Karbon-karbon Sifat khas atom karbon yitu memiliki kemampuan yang terbatas untuk menggunakan bersama elektronnya tidak saja dengan unsur lain tetapi juga dengan atom karbon lain.

Misalnya etana dan heksakloroetana: setiap karbon terikat dengan tiga atom hitrogen atau tiga atom klor. Kendatipun mereka tidak memiliki satu melainkan dua atom kabon, senyawa-senyawa ini mempunyai sifat kimia yang serupa dengan (brturut-turut) metana dan karbonnetraklorida.

Ikatan karbon-karbon (molekulnya: karbon dengan karbon) Pada etana, seperti halnya dengan ikatan hitrogen pada molekul hitrogen adalah ikatan kovalen murni yang electron-elektron digunakan bersama dianatara dua atom karbon yang identik.

Sebagaimana halnya dengan molekul hidrogen, kalor digunakan untuk memecah-mecahkan ikatan karbon menjadi dua bagian CH3 (dinamakan radikal metal). Radikal aialah bagian dengan elektron bebas yang jumlahnya ganjil. Jumlah atom karbon yang dapat berikatan hamper tak terbatas dan beberapa molekul dapat mengandung sederet 100 atau lebih ikatan karbon-karbon.

Kemampuan unsur untuk membentuk rantai sebagai hasil ikatan atom sejenis dinamakan katensi (catention). Atom karbon tidak hanya berikatan dalam rantai yang lurus melainkan juga membentuk cabang dan melingkar sebagaimana kita lihat sangat seragam. • Valensi Valensi berarti kekuatan atau kapasitas dan sangat berkaitan dengan gabungan kekuatan dari satu unsur. Valensi unsur-unsur adalah jumlah ikatan yang dapat dibuat oleh unsur-unsur yang bersangkutan.

• Isometri Rumus molekul adalah suatu zat yang hanya menyatakan jumlah dan macam tom yang ada sedangkan rumus struktur menjelaskan bagaimana atom – atom tersusun. misalnya : H2O adalah rumus molekul untuk air. setiap molekul air tersusun dari dua atom hidogen dan satu atom oksigen. Rumus sturkturnya H – O – H Istilah isomer berasal dari bahasa latin yaitu “Isos” artinya sama dan “metos” artinya bagian.

jadi isomer sturktur adalah senyawa – senyawa yang mempunyai rumus molekul sama tetapi berbeda rumus strukturnya. contoh: untuk rumus C2H6O rumus strukturnya : Pada rumus pertama, kedua karbon dihubungkan melalui ikatan kovalen tunggal, sedangkan pada rumus kedua karbon dihubungkan dengan oksigen. Untuk mengetahui susunan mana yang merupakan cairan dan mana yang merupakan gas, yaitu dengan melakukan pengujian kimia sederhana. cairan C 2H 6O (etil alcohol atau etanol) bereaksi denagn logam natrium menghasilkan gas hydrogen dan senyawa baru C 2H 5O na.

sedangkan gas C 2H 6O (dimetil eter) tidak bereaksi dengan logam natrium. keduannya merupakan isomer – isomer struktur dimana mempunyai rumus struktur yang sesame tetapi berbeda strukturnya. Penulisan rumus struktur Dalam penulisan rumus strukturuntuk mempelajari kimia organik maka dapat dilakukan dengan beberapa cara misalnya untuk rumus molekul C 5H 12 • Rantai lurus (C-C-C-C-C) Rantai tersebut menggunakan satu valensi bagi setiap karbon yang berada “diujung” ke karbon nerikutnya ditengah rantai.

karena itu setiap setiap karbon yang memiliki sisa tiga valensi untuk mengikat hydrogen. • Rantai bercabang Misalkan untuk mengurangi trpanjang dari empat karbon dan atom karbon memiliki elektron valensi sebanyak.

karbon kelima pada salah satu karbon dibagin tengah seperti: C-C-C-C C Atom karbon memiliki elektron valensi sebanyak ditambahkan ikatan-ikatan lain pada setiap karbon agar memenuhi valensi empat akan terlihat ada tiga karbon yang mempunyai tiga hidrogen sedangkan adapula yang mempunyai satu atau dua hidrogen.

• Singkatan rumus struktur Untuk memudahkan penulisan rumus struktur maka dapat dilakukan dengan cara disingkat tampa mengurangi arti dari rumus tersebut. misalnya rumus struktur etil alkohol. • Peranan Kimia Organik Dalam Kehidupan Sehari-hari Kimia organik dalam peranannya dalam kehidupan sehari-hari sangatlah banyak melalui cabang-cabang ilmu yang lain. Hampir sama reaksi dalam jasad hidup melibatkan zat – zat orgsnik dan bahian utama dari jasad hidup yakni protein, karbohidrat, lipid, (lemak) asam nukleat (DNA, RNA)membrane sel, enzim, hormone adalah senyawa organik.

Senyawa – senyawa organik kita lihat sehari – hari adalah bensin, pakaianmebel dari kayu. kertas untuk buku – buku, obat – obatanbungkusan – bungkasan palastik, film untuk potret, minyak wangi, karpet, dan lain – lain. sering juga kita mendengar berbagai berita seperti polietilen, epoksi, “stirofoam”. nikosi, lemak tak jenuh, kolestrol dan bilangan oktan.

Atom karbon memiliki elektron valensi sebanyak contoh- contoh senyawa organik yang berperan dalam kehidupan sehari – hari bahwa dari senyawa – senyawa tersebut sangat memiliki arti dalam memenuhi kebutuhan manusia dan sebagai bukti nyata bentukan senyawa – senyawa yang ada yang berhasil di produk dari kebudayaan teknologi, sebab cabang ilmu senyawa organik bukan sekedar cabang ilmu bagi ahli kimia professional atau dokter, ahli fisika, daokter hewan, apoteker, perawat atau ahli tanaman salah satunya adalah alkohol dalam kehidupan sehari – hari yakni : • Metanol Methanol dapat diubah menjadi methanol yang dugunakan untuk membuat polimer (plastik) sebagai pelarut untuk membuat senyawa organik.

• Etanol Etanol adalah alkohol biasa yang merupakan alkohol terpenting, pada suhu kamar etanol berupa zat cair bening, mudah menguap dan berbau khas. selain itu banyak senyawa organik yakni: • polialkohol yang terdiri dari 2 seperti: • Etil glikol berupa zat cair tak berwarnakental dan berasa manis, sebagai gahan antgi beku, pada radiator mobil, sebagai bahan industry erat sintesis seperti Dacron sebagai pelarut dan bahan pelunak.

atom karbon memiliki elektron valensi sebanyak

• Gliserol: sebagai pelembab dan pelembut pada lotion dan bahan-bahan hosmetik juga sebagai pelarut jenis obat – obatan. • Eter : kegunaannya sebagai pelarut dan obat bis (anestesi) pada operasi terutama etil eter • Aldehid: formaldehid merupakan aldehid yang paling banyak diproduksi dengan kegunaannya sebagai berikut : • untuk membuat formalin yang dugunakan untuk mengawetkan (jangan pada makanan) • untuk membuat berbagai jenis plastik termoset (tidak mudah meleleh pada pemanasan) • Keton banyak digunakan adalah propanon sebagai pelarut untuk lilin, palstik, sirlak, juga dapat memproduksi rayon pembersih pewarna kuku.

• Ester • Ester buah – buahan Ester yang berbau sedap digunakan sebagai penyedap atau esen • Lilin dari asam karboksilat berantai panjang dengan alkohol berantai panjang untuk membatik • Lemak dan minyak untuk membuat mentega dan sabun [ Pelengkap ] Jika ada pertanyaan ujian seperti ini : Apa tujuan dari pembentukan ikatan kimia ? • maka jawabannya adalah Membedakan senyawa yang mempunyai ikatan elektrovalen dan ikatan kovalen serta, reaksi pembentukan kompleks dan bukan kompleks.

Mengapa atom membentuk ikatan kimia? maka jawabannya adalah • Karena adanya satu atau lebih elektron dari satu atom ke atom yang lain sedemikian rupa sehingga terdapat ion positif dan ion negatif yang keduanya saling tarik-menarik karena muatannya berlawanan, membentuk ikatan ion. • Karena adanya pemakaian bersama pasangan elektron di antara atom-atom yang berikatan. Atom karbon memiliki elektron valensi sebanyak ikatan yang terbentuk disebut ikatan kovalen.

• Perpindahan elektron atau pemakaian bersama pasangan elektron berlangsung sedemikian rupa sehingga setiap atom yang diberikan mempunyai suatu konfigurasi elektron mantap, yaitu konfigurasi dengan 8 elektron valensi. Jelaskan apa yang dimaksud dengan ikatan kovalen? • maka jawabannya adalah Ikatan kovalen adalah ikatan yang terjadi akibat pemakaian pasangan elektron secara bersama-sama oleh dua atom (James E. Brady, 1990). Ikatan kovalen terbentuk di antara dua atom yang sama-sama ingin menangkap elektron (sesama atom bukan logam).

Apa yang dimaksud dengan ikatan Vanderwalls? • maka jawabannya adalah Gaya-gaya antarmolekul secara kolektif disebut juga gaya van der Waals. Jadi, bisa dikatakan bahwa gaya London, gaya dipol-dipol, dan gaya dipol-dipol terimbas, semuanya tergolong gaya van der Waals.

Kesimpulan Mengenai kembali dari latar belakang penulisan sampai pada pembahasan mengenai Ikatan Kimia Dan Senyawa Organik dalam kehidupan sehari–hari telah ditunjukkan penulis tentang berbagai kimia organik yang berasal dari senyawa–senyawa yang terdapat di dalam dan juga sintesi dari penelitian laboratorium. Berasal dari sekian banyak senyawa dan gugus–gugus karbon yang ada memiliki peranan penting dalam kehidupan sehari–hari tertutama dalam bidang trasportasi, kesehatan juga dalam bidang–bidang lain yang bersangkutan dengan kebutuhan hidup manusia.

Saran Dalam penulisan makalah ini masih sangat membutuhkan banyak penyempurnaan namun juga sangat bermanfaat dalam mendalami pengetahuan tentang Ikatan Kimia Dan Senyawa Organik. Dengan demikian penulis dapat member saran saran sebagai berikut : • Bagi pembaca yang menemukan kekurangan – kekurangn dalam tulisan atom karbon memiliki elektron valensi sebanyak, perlu pembenahan denagn mengoleksi banyak sumber demi penyempurnaan • Tidak hanya sekedar pembaca tulisan terapai bila perlu sangat diharapkan untuk bisa mempelajari dan mendalaminya sebagai pengetahuan yang penting.

DAFTAR PUSTAKA Elida Tety. 1996. Pengantar Kimia. Jakarta: Penerbit Gunadarma. Mukti Agus. 2013. Peningkatan Atom karbon memiliki elektron valensi sebanyak Konsep Ikatan Kimia Melalui Perbaikan Bahan Ajar. Aceh: Chimica Didactica Acta. Nigel, Saunders. 2007. Chemistry eBook for AQA. New York: Oxford University Press. UPT MKU. 20113. Kimia Dasar I. Makassar: Universitas Hasanuddin. Rufaida, Anis Dyah., Wulandari, Erna Tri, dan Waldjinah. 2013. Detik-detik Ujian Nasional Kimia Tahun Pelajaran 2013/2014.

Klaten: Intan Pariwara. Saidah, Aas, dan Purba, Michael. 2013. Kimia Bidang Keahlian Teknologi dan Rekayasa. Jakarta: Penerbit Erlangga. Syarifudin. 2008. Inti Sari Kimia untuk SMA. Tangerang: Scientific Press.

Hark Suminar, 1983. Kimia Organik, Edisi Ke Enam. Penerbit: Erlangga, Jakarta Kolo, Sefrinus. 2009. Bahan Ajar Kimia Organik. Universitas Timor. Kefamenanu. Lianawati Lucia, 1999. Bimbingan Pemantapan Kimia. Penerbit: CV Yrama Widya, Bandung Demikian ulasan materi Ikatan Kimia yang telah kami susun dan paparkan dalam makalah ini.

Kami berharap makalah yang kami susun ini dapat bermanfaat bagi rekan-rekan mahasiswa agar dapat lebih memahami lebih jauh mengenai Ikatan Kimia dan macam-macamnya, dan agar rekan-rekan mahasiswa dapat menjawab pertanyaan-pertanyaan seputar permasalah dalam ikatan kimia.

Terima kasih banyak atas kunjungannya. 🙂 🙂 🙂 Baca Juga: • • 6 Perbedaan Senyawa Polar Dengan Non Polar • • Penjelasan Perbedaan Metanol Dan Bensin Lengkap • Pengertian Larutan Dan Kelarutan Dalam Kimia Beserta Contohnya Sebarkan ini: • • • • • Posting pada Kimia, SMA, SMK Ditag #pengertian ikatan ion, #pengertian ikatan kovalen, Apa tujuan dari pembentukan ikatan kimia?, contoh ikatan ion dan ikatan kovalen, contoh ikatan kimia, contoh ikatan kimia dalam kehidupan sehari-hari, contoh ikatan logam, ikatan kimia pdf, jenis jenis ikatan kimia, macam macam ikatan kimia, makalah ikatan kimia doc, materi ikatan kimia lengkap, mengapa terjadi ikatan kimia, pengertian dan contoh Ikatan Van Der Waals, pengertian ikatan kimia dan jenis jenisnya, pengertian ikatan kimia menurut para ahli, rangkuman ikatan kimia Navigasi pos

Kekhasan dan Struktur Atom Karbon menggunakan Molymod, KD 3.1 Kimia SMA Kelas XI Semester 1




2022 www.videocon.com